BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 23026730)

  • 1. Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Nov; 15():33-45. PubMed ID: 23026730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behaviour of pressed and sintered titanium alloys obtained from prealloyed and blended elemental powders.
    Bolzoni L; Esteban PG; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2012 Oct; 14():29-38. PubMed ID: 22963744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical behaviour of pressed and sintered CP Ti and Ti-6Al-7Nb alloy obtained from master alloy addition powder.
    Bolzoni L; Weissgaerber T; Kieback B; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2013 Apr; 20():149-61. PubMed ID: 23455171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the mechanical properties of powder metallurgy Ti-6Al-7Nb alloy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    J Mech Behav Biomed Mater; 2017 Mar; 67():110-116. PubMed ID: 27988440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility study of the production of biomedical Ti-6Al-4V alloy by powder metallurgy.
    Bolzoni L; Ruiz-Navas EM; Gordo E
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():400-407. PubMed ID: 25686965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical properties and microstructural evolution of vacuum hot-pressed titanium and Ti-6Al-7Nb alloy.
    Bolzoni L; Ruiz-Navas EM; Neubauer E; Gordo E
    J Mech Behav Biomed Mater; 2012 May; 9():91-9. PubMed ID: 22498287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders.
    Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H
    J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.
    Wang S; Ma Z; Liao Z; Song J; Yang K; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():123-32. PubMed ID: 26354247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An initial study of diffusion bonds between superplastic Ti-6Al-4V for implant dentistry applications.
    Elias KL; Daehn GS; Brantley WA; McGlumphy EA
    J Prosthet Dent; 2007 Jun; 97(6):357-65. PubMed ID: 17618918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and tensile properties after thermohydrogen processing of Ti-6 Al-4V.
    Guitar A; Vigna G; Luppo MI
    J Mech Behav Biomed Mater; 2009 Apr; 2(2):156-63. PubMed ID: 19627819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications.
    Bolzoni L; Yang F
    J Mech Behav Biomed Mater; 2019 Sep; 97():41-48. PubMed ID: 31096149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications.
    Alshammari Y; Yang F; Bolzoni L
    J Mech Behav Biomed Mater; 2019 Mar; 91():391-397. PubMed ID: 30665199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ti-Nb-Sn-hydroxyapatite composites synthesized by mechanical alloying and high frequency induction heated sintering.
    Wang X; Chen Y; Xu L; Xiao S; Kong F; Woo KD
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2074-80. PubMed ID: 22098907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of titanium removable dental prosthesis frameworks with a 2-step investment coating method.
    Koike M; Hummel SK; Ball JD; Okabe T
    J Prosthet Dent; 2012 Jun; 107(6):393-9. PubMed ID: 22633596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An application of powder metallurgy to dentistry.
    Oda Y; Ueno S; Kudoh Y
    Bull Tokyo Dent Coll; 1995 Nov; 36(4):175-82. PubMed ID: 8689755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructures and mechanical properties of powder injection molded Ti-6Al-4V/HA powder.
    Thian ES; Loh NH; Khor KA; Tor SB
    Biomaterials; 2002 Jul; 23(14):2927-38. PubMed ID: 12069334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure, phases, and mechanical response of Ti-alloy bioactive glass composite coatings.
    Nelson GM; Nychka JA; McDonald AG
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():261-76. PubMed ID: 24433912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy.
    do Prado RF; Esteves GC; Santos ELS; Bueno DAG; Cairo CAA; Vasconcellos LGO; Sagnori RS; Tessarin FBP; Oliveira FE; Oliveira LD; Villaça-Carvalho MFL; Henriques VAR; Carvalho YR; De Vasconcellos LMR
    PLoS One; 2018; 13(5):e0196169. PubMed ID: 29771925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.