These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 23026861)

  • 1. Heterogeneous nanoclusters assembled by PNA-templated double-stranded DNA.
    Sun D; Stadler AL; Gurevich M; Palma E; Stach E; van der Lelie D; Gang O
    Nanoscale; 2012 Nov; 4(21):6722-5. PubMed ID: 23026861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free and naked eye detection of PNA/DNA hybridization using enhancement of gold nanoparticles.
    Kim SK; Cho H; Jeong J; Kwon JN; Jung Y; Chung BH
    Chem Commun (Camb); 2010 May; 46(19):3315-7. PubMed ID: 20361103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An alternative strategy to synthesize PNA and DNA magnetic conjugates forming nanoparticle assembly based on PNA/DNA duplexes.
    Milano G; Musumeci D; Gaglione M; Messere A
    Mol Biosyst; 2010 Mar; 6(3):553-61. PubMed ID: 20174683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles.
    Miao XM; Xiong C; Wang WW; Ling LS; Shuai XT
    Chemistry; 2011 Sep; 17(40):11230-6. PubMed ID: 21922555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes.
    Kanjanawarut R; Su X
    Anal Chem; 2009 Aug; 81(15):6122-9. PubMed ID: 20337394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule technology for rapid detection of DNA hybridization based on resonance light scattering of gold nanoparticles.
    Wang K; Qiu X; Dong C; Ren J
    Chembiochem; 2007 Jul; 8(10):1126-9. PubMed ID: 17506038
    [No Abstract]   [Full Text] [Related]  

  • 7. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA.
    Sun D; Gang O
    J Am Chem Soc; 2011 Apr; 133(14):5252-4. PubMed ID: 21425848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection.
    Chakrabarti R; Klibanov AM
    J Am Chem Soc; 2003 Oct; 125(41):12531-40. PubMed ID: 14531698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of cobalt ferrite core/metallic shell nanoparticles for the development of a specific PNA/DNA biosensor.
    Pita M; Abad JM; Vaz-Dominguez C; Briones C; Mateo-Martí E; Martín-Gago JA; Morales Mdel P; Fernández VM
    J Colloid Interface Sci; 2008 May; 321(2):484-92. PubMed ID: 18329659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection.
    Su X; Kanjanawarut R
    ACS Nano; 2009 Sep; 3(9):2751-9. PubMed ID: 19708641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-selective binding of nanoparticles to double-stranded DNA via peptide nucleic acid "invasion".
    Stadler AL; Sun D; Maye MM; van der Lelie D; Gang O
    ACS Nano; 2011 Apr; 5(4):2467-74. PubMed ID: 21388119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide nucleic acid - an opportunity for bio-nanotechnology.
    Anstaett P; Gasser G
    Chimia (Aarau); 2014; 68(4):264-8. PubMed ID: 24983612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glyco-DNA-gold nanoparticles: lectin-mediated assembly and dual-stimuli response.
    Witten KG; Rech C; Eckert T; Charrak S; Richtering W; Elling L; Simon U
    Small; 2011 Jul; 7(14):1954-60. PubMed ID: 21656675
    [No Abstract]   [Full Text] [Related]  

  • 14. Promotion of strand invasion by utilizing entropically-favored PNA.
    Ishizuka T; Sforza S; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2009; (53):161-2. PubMed ID: 19749310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of stable peptide nucleic acid-modified gold nanoparticles and their assembly onto gold surfaces.
    Anstaett P; Zheng Y; Thai T; Funston AM; Bach U; Gasser G
    Angew Chem Int Ed Engl; 2013 Apr; 52(15):4217-20. PubMed ID: 23460137
    [No Abstract]   [Full Text] [Related]  

  • 16. Cooperative strand invasion of double-stranded DNA by peptide nucleic acid.
    Sugiyama T; Imamura Y; Hakamata W; Kurihara M; Kittaka A
    Nucleic Acids Symp Ser (Oxf); 2005; (49):167-8. PubMed ID: 17150686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-directed self-assembly of gold nanoparticles onto nanopatterned surfaces: controlled placement of individual nanoparticles into regular arrays.
    Lalander CH; Zheng Y; Dhuey S; Cabrini S; Bach U
    ACS Nano; 2010 Oct; 4(10):6153-61. PubMed ID: 20932055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable silver nanoparticle-DNA conjugates for directed self-assembly of core-satellite silver-gold nanoclusters.
    Pal S; Sharma J; Yan H; Liu Y
    Chem Commun (Camb); 2009 Oct; (40):6059-61. PubMed ID: 19809643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation of the assembly of gold nanoparticles on DNA fragments via electrostatic interaction.
    Komarov PV; Zherenkova LV; Khalatur PG
    J Chem Phys; 2008 Mar; 128(12):124909. PubMed ID: 18376975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-strand binding protein enhances invasion of a PNA strand to double-stranded DNA.
    Ishizuka T; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2008; (52):141-2. PubMed ID: 18776293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.