These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 23027046)

  • 41. RNA interference (RNAi) in hematology.
    Scherr M; Steinmann D; Eder M
    Ann Hematol; 2004 Jan; 83(1):1-8. PubMed ID: 14574462
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The promise, pitfalls and progress of RNA-interference-based antiviral therapy for respiratory viruses.
    DeVincenzo JP
    Antivir Ther; 2012; 17(1 Pt B):213-25. PubMed ID: 22311654
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The design, selection, and evaluation of highly specific and functional siRNA incorporating unlocked nucleobase analogs.
    Vaish N; Agarwal P
    Methods Mol Biol; 2013; 942():111-34. PubMed ID: 23027048
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lentiviral siRNAs targeting multiple highly conserved RNA sequences of human immunodeficiency virus type 1.
    Chang LJ; Liu X; He J
    Gene Ther; 2005 Jul; 12(14):1133-44. PubMed ID: 15750613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Harnessing RNA interference to develop neonatal therapies: from Nobel Prize winning discovery to proof of concept clinical trials.
    DeVincenzo JP
    Early Hum Dev; 2009 Oct; 85(10 Suppl):S31-5. PubMed ID: 19833462
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Local RNA target structure influences siRNA efficacy: a systematic global analysis.
    Overhoff M; Alken M; Far RK; Lemaitre M; Lebleu B; Sczakiel G; Robbins I
    J Mol Biol; 2005 May; 348(4):871-81. PubMed ID: 15843019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.
    Lee HS; Ahn J; Jun EJ; Yang S; Joo CH; Kim YK; Lee H
    Biochem Biophys Res Commun; 2009 Jul; 384(4):431-5. PubMed ID: 19422797
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A novel in vitro transcription method for producing siRNAs without specific sequence requirements.
    Zhu X; Li T; Dang Y; Feng Y; Huang P
    Mol Biotechnol; 2005 Nov; 31(3):187-92. PubMed ID: 16230768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. What parameters to consider and which software tools to use for target selection and molecular design of small interfering RNAs.
    Matveeva O
    Methods Mol Biol; 2013; 942():1-16. PubMed ID: 23027043
    [TBL] [Abstract][Full Text] [Related]  

  • 50. siRNA: novel therapeutics from functional genomics.
    Joshi BH; Pachchigar KP
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):1-30. PubMed ID: 25023460
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Methods for selecting effective siRNA target sequences using a variety of statistical and analytical techniques.
    Takasaki S
    Methods Mol Biol; 2013; 942():17-55. PubMed ID: 23027044
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Strategies for designing and validating immunostimulatory siRNAs.
    Gantier MP
    Methods Mol Biol; 2013; 942():179-91. PubMed ID: 23027052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gene silencing nucleic acids designed by scanning arrays: anti-EGFR activity of siRNA, ribozyme and DNA enzymes targeting a single hybridization-accessible region using the same delivery system.
    Beale G; Hollins AJ; Benboubetra M; Sohail M; Fox SP; Benter I; Akhtar S
    J Drug Target; 2003 Aug; 11(7):449-56. PubMed ID: 15203934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Targeted gene silencing by small interfering RNA-based knock-down technology.
    Zhang J; Hua ZC
    Curr Pharm Biotechnol; 2004 Feb; 5(1):1-7. PubMed ID: 14965205
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Measuring RNAi knockdown using qPCR.
    Milstein S; Nguyen M; Meyers R; de Fougerolles A
    Methods Enzymol; 2013; 533():57-77. PubMed ID: 24182918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Whole-genome thermodynamic analysis reduces siRNA off-target effects.
    Chen X; Liu P; Chou HH
    PLoS One; 2013; 8(3):e58326. PubMed ID: 23484018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. RNA "traffic lights": an analytical tool to monitor siRNA integrity.
    Holzhauser C; Liebl R; Goepferich A; Wagenknecht HA; Breunig M
    ACS Chem Biol; 2013 May; 8(5):890-4. PubMed ID: 23402653
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-series oligonucleotide count to assign antiviral siRNAs with long utility fit in the big data era.
    Wada K; Wada Y; Iwasaki Y; Ikemura T
    Gene Ther; 2017 Oct; 24(10):668-673. PubMed ID: 28905886
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of target mRNA structure on siRNA silencing efficiency: A large-scale study.
    Gredell JA; Berger AK; Walton SP
    Biotechnol Bioeng; 2008 Jul; 100(4):744-55. PubMed ID: 18306428
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designing of highly effective complementary and mismatch siRNAs for silencing a gene.
    Ahmed F; Raghava GP
    PLoS One; 2011; 6(8):e23443. PubMed ID: 21853133
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.