BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 23027188)

  • 1. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2.
    Hull CM; Bader O; Parker JE; Weig M; Gross U; Warrilow AG; Kelly DE; Kelly SL
    Antimicrob Agents Chemother; 2012 Dec; 56(12):6417-21. PubMed ID: 23027188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.
    Eddouzi J; Parker JE; Vale-Silva LA; Coste A; Ischer F; Kelly S; Manai M; Sanglard D
    Antimicrob Agents Chemother; 2013 Jul; 57(7):3182-93. PubMed ID: 23629718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B.
    Hull CM; Parker JE; Bader O; Weig M; Gross U; Warrilow AG; Kelly DE; Kelly SL
    Antimicrob Agents Chemother; 2012 Aug; 56(8):4223-32. PubMed ID: 22615281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of Isavuconazole and Other Azoles against Candida Clinical Isolates and Yeast Model Systems with Known Azole Resistance Mechanisms.
    Sanglard D; Coste AT
    Antimicrob Agents Chemother; 2016 Jan; 60(1):229-38. PubMed ID: 26482310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro activities of voriconazole, fluconazole, itraconazole and amphotericin B against non Candida albicans yeast isolates.
    Swinne D; Watelle M; Nolard N
    Rev Iberoam Micol; 2005 Mar; 22(1):24-8. PubMed ID: 15813679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The activity of echinocandins, amphotericin B and voriconazole against fluconazole-susceptible and fluconazole-resistant Brazilian Candida glabrata isolates.
    Mario DA; Denardi LB; Bandeira LA; Antunes MS; Santurio JM; Severo LC; Alves SH
    Mem Inst Oswaldo Cruz; 2012 May; 107(3):433-6. PubMed ID: 22510843
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STB5 is a negative regulator of azole resistance in Candida glabrata.
    Noble JA; Tsai HF; Suffis SD; Su Q; Myers TG; Bennett JE
    Antimicrob Agents Chemother; 2013 Feb; 57(2):959-67. PubMed ID: 23229483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterologous Expression of Full-Length Lanosterol 14α-Demethylases of Prominent Fungal Pathogens Candida albicans and Candida glabrata Provides Tools for Antifungal Discovery.
    Keniya MV; Ruma YN; Tyndall JDA; Monk BC
    Antimicrob Agents Chemother; 2018 Nov; 62(11):. PubMed ID: 30126959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluconazole exposure rather than clonal spreading is correlated with the emergence of Candida glabrata with cross-resistance to triazole antifungal agents.
    Chen TC; Chen YH; Chen YC; Lu PL
    Kaohsiung J Med Sci; 2012 Jun; 28(6):306-15. PubMed ID: 22632885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reliability of the Vitek 2 yeast susceptibility test for detection of in vitro resistance to fluconazole and voriconazole in clinical isolates of Candida albicans and Candida glabrata.
    Posteraro B; Martucci R; La Sorda M; Fiori B; Sanglard D; De Carolis E; Florio AR; Fadda G; Sanguinetti M
    J Clin Microbiol; 2009 Jun; 47(6):1927-30. PubMed ID: 19403774
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Ahmad S; Joseph L; Parker JE; Asadzadeh M; Kelly SL; Meis JF; Khan Z
    Antimicrob Agents Chemother; 2019 Feb; 63(2):. PubMed ID: 30455247
    [No Abstract]   [Full Text] [Related]  

  • 12. Identification and characterization of four azole-resistant erg3 mutants of Candida albicans.
    Martel CM; Parker JE; Bader O; Weig M; Gross U; Warrilow AG; Rolley N; Kelly DE; Kelly SL
    Antimicrob Agents Chemother; 2010 Nov; 54(11):4527-33. PubMed ID: 20733039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the in vitro kinetic activity of caspofungin against Candida glabrata.
    Nagappan V; Boikov D; Vazquez JA
    Antimicrob Agents Chemother; 2010 Jan; 54(1):522-5. PubMed ID: 19841143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of azole resistance among clinical isolates of Candida glabrata in Poland.
    Szweda P; Gucwa K; Romanowska E; Dzierz Anowska-Fangrat K; Naumiuk Ł; Brillowska-Da Browska A; Wojciechowska-Koszko I; Milewski S
    J Med Microbiol; 2015 Jun; 64(6):610-619. PubMed ID: 25818698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UPC2A is required for high-level azole antifungal resistance in Candida glabrata.
    Whaley SG; Caudle KE; Vermitsky JP; Chadwick SG; Toner G; Barker KS; Gygax SE; Rogers PD
    Antimicrob Agents Chemother; 2014 Aug; 58(8):4543-54. PubMed ID: 24867980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro activity of voriconazole and other antifungal agents against clinical isolates of Candida glabrata and Candida krusei.
    Drago M; Scaltrito MM; Morace G;
    Eur J Clin Microbiol Infect Dis; 2004 Aug; 23(8):619-24. PubMed ID: 15258831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Voriconazole-induced inhibition of the fungicidal activity of amphotericin B in Candida strains with reduced susceptibility to voriconazole: an effect not predicted by the MIC value alone.
    Lignell A; Löwdin E; Cars O; Sanglard D; Sjölin J
    Antimicrob Agents Chemother; 2011 Apr; 55(4):1629-37. PubMed ID: 21282443
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid acquisition of stable azole resistance by Candida glabrata isolates obtained before the clinical introduction of fluconazole.
    Borst A; Raimer MT; Warnock DW; Morrison CJ; Arthington-Skaggs BA
    Antimicrob Agents Chemother; 2005 Feb; 49(2):783-7. PubMed ID: 15673768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prevalence and Antifungal Susceptibility of the Emerging Fungal Species,
    Sikora M; Kuthan R; Piskorska-Malolepsza K; Golas-Pradzynska M; Domański D; Augustynowicz-Kopeć E; Swoboda-Kopec E
    Pol J Microbiol; 2019 Sep; 68(3):303-308. PubMed ID: 31880875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Transcriptomics Approach To Unveiling the Mechanisms of
    Cavalheiro M; Costa C; Silva-Dias A; Miranda IM; Wang C; Pais P; Pinto SN; Mil-Homens D; Sato-Okamoto M; Takahashi-Nakaguchi A; Silva RM; Mira NP; Fialho AM; Chibana H; Rodrigues AG; Butler G; Teixeira MC
    Antimicrob Agents Chemother; 2019 Jan; 63(1):. PubMed ID: 30348666
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.