These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 23027299)

  • 1. Bandwidth reduction in a multistage Brillouin system.
    Preussler S; Schneider T
    Opt Lett; 2012 Oct; 37(19):4122-4. PubMed ID: 23027299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brillouin scattering gain bandwidth reduction down to 3.4MHz.
    Preussler S; Wiatrek A; Jamshidi K; Schneider T
    Opt Express; 2011 Apr; 19(9):8565-70. PubMed ID: 21643107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-light-storage enhancement by reducing the Brillouin gain bandwidth.
    Preussler S; Wiatrek A; Jamshidi K; Schneider T
    Appl Opt; 2011 Aug; 50(22):4252-6. PubMed ID: 21833096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulated Brillouin scattering slow-light-based fiber-optic temperature sensor.
    Wang L; Zhou B; Shu C; He S
    Opt Lett; 2011 Feb; 36(3):427-9. PubMed ID: 21283212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency domain aperture for the gain bandwidth reduction of stimulated Brillouin scattering.
    Wiatrek A; Preussler S; Jamshidi K; Schneider T
    Opt Lett; 2012 Mar; 37(5):930-2. PubMed ID: 22378442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow light in multi-line Brillouin gain spectrum.
    Lu Z; Dong Y; Li Q
    Opt Express; 2007 Feb; 15(4):1871-7. PubMed ID: 19532425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple radio frequency measurements with an improved frequency resolution based on stimulated Brillouin scattering with a reduced gain bandwidth.
    Shi T; Chen Y
    Opt Lett; 2021 Jul; 46(14):3460-3463. PubMed ID: 34264238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-input dynamic range and selectivity stimulated Brillouin scattering-based microwave photonic filter utilizing a dual-stage scheme.
    Zhang K; Zhong Y; Ke C; Liu D
    Opt Lett; 2017 Sep; 42(17):3287-3290. PubMed ID: 28957085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavity enhanced stimulated Brillouin scattering in an optical chip for multiorder Stokes generation.
    Pant R; Li E; Choi DY; Poulton CG; Madden SJ; Luther-Davies B; Eggleton BJ
    Opt Lett; 2011 Sep; 36(18):3687-9. PubMed ID: 21931433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of spectral resolution and optical rejection ratio of Brillouin optical spectral analysis using polarization pulling.
    Preussler S; Zadok A; Wiatrek A; Tur M; Schneider T
    Opt Express; 2012 Jun; 20(13):14734-45. PubMed ID: 22714534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multichannel optical filters with an ultranarrow bandwidth based on sampled Brillouin dynamic gratings.
    Guo JJ; Li M; Deng Y; Huang N; Liu J; Zhu N
    Opt Express; 2014 Feb; 22(4):4290-300. PubMed ID: 24663752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandwidth improvement for slow light using amplification characteristics of cascaded vertical-cavity surface-emitting lasers.
    Ma YN; Luo B; Yan LS; Pan W; Zou XH; Zhao JP; Li NQ; Liu XK
    Opt Lett; 2013 Feb; 38(3):308-10. PubMed ID: 23381420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Slow Light" in stimulated Brillouin scattering: on the influence of the spectral width of pump radiation on the group index: Comment.
    Gonzalez-Herraez M; Thévenaz L
    Opt Express; 2010 Apr; 18(8):8053-4. PubMed ID: 20588649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers.
    Shumakher E; Orbach N; Nevet A; Dahan D; Eisenstein G
    Opt Express; 2006 Jun; 14(13):5877-84. PubMed ID: 19516757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Narrow spectral response of a Brillouin amplifier.
    Sternklar S; Granot E
    Opt Lett; 2003 Jun; 28(12):977-9. PubMed ID: 12836751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 18 W single-stage single-frequency acoustically tailored Raman fiber amplifier.
    Vergien C; Dajani I; Robin C
    Opt Lett; 2012 May; 37(10):1766-8. PubMed ID: 22627564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comment on: "Slow Light" in Stimulated Brillouin Scattering: on the influence of the spectral width of pump radiation on the group index.
    Minardo A; Bernini R; Zeni L
    Opt Express; 2010 Jan; 18(2):1788-90. PubMed ID: 20174006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharp tunable optical filters based on the polarization attributes of stimulated Brillouin scattering.
    Wise A; Tur M; Zadok A
    Opt Express; 2011 Oct; 19(22):21945-55. PubMed ID: 22109047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Rayleigh backscattering on Stimulated Brillouin Scattering threshold evaluation for 10 Gb/s NRZ-OOK signals.
    Ferrario M; Marazzi L; Boffi P; Righetti A; Martinelli M
    Opt Express; 2009 Sep; 17(20):18110-5. PubMed ID: 19907601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip stimulated Brillouin scattering.
    Pant R; Poulton CG; Choi DY; Mcfarlane H; Hile S; Li E; Thevenaz L; Luther-Davies B; Madden SJ; Eggleton BJ
    Opt Express; 2011 Apr; 19(9):8285-90. PubMed ID: 21643078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.