These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 23027300)

  • 1. Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens.
    Chen CW; Cho M; Huang YP; Javidi B
    Opt Lett; 2012 Oct; 37(19):4125-7. PubMed ID: 23027300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional imaging based on electronically adaptive liquid crystal lens.
    Li H; Pan F; Wu Y; Zhang Y; Xie X
    Appl Opt; 2014 Nov; 53(33):7916-23. PubMed ID: 25607868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional optical microscopy using axially distributed image sensing.
    Shin D; Cho M; Javidi B
    Opt Lett; 2010 Nov; 35(21):3646-8. PubMed ID: 21042378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Axially distributed sensing for three-dimensional imaging with unknown sensor positions.
    Xiao X; Javidi B
    Opt Lett; 2011 Apr; 36(7):1086-8. PubMed ID: 21478991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional imaging and visualization using off-axially distributed image sensing.
    Piao Y; Zhang M; Shin D; Yoo H
    Opt Lett; 2013 Aug; 38(16):3162-4. PubMed ID: 24104676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional imaging and visualization of partially occluded objects using axially distributed stereo image sensing.
    Shin D; Javidi B
    Opt Lett; 2012 May; 37(9):1394-6. PubMed ID: 22555682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axially distributed sensing with a monoscopic imaging lens for single-shot distance measurements.
    Sandner M; Kolenović E; Klattenhoff R; Kolenović E; Elandaloussi F; von Kopylow C; Bergmann RB
    Appl Opt; 2014 Aug; 53(22):5078-83. PubMed ID: 25090344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth map sensor based on optical doped lens with multi-walled carbon nanotubes of liquid crystal.
    Hui L; Fan P; Yuntao W; Yanduo Z; Xiaolin X
    Appl Opt; 2016 Jan; 55(1):140-7. PubMed ID: 26835633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integral three-dimensional image capture equipment with closely positioned lens array and image sensor.
    Arai J; Yamashita T; Miura M; Hiura H; Okaichi N; Okano F; Funatsu R
    Opt Lett; 2013 Jun; 38(12):2044-6. PubMed ID: 23938971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.
    Wang YJ; Shen X; Lin YH; Javidi B
    Opt Lett; 2015 Aug; 40(15):3564-7. PubMed ID: 26258358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional integral imaging with improved visualization using subpixel optical ray sensing.
    Shin D; Javidi B
    Opt Lett; 2012 Jun; 37(11):2130-2. PubMed ID: 22660144
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distortion-free wide-angle 3D imaging and visualization using off-axially distributed image sensing.
    Zhang M; Piao Y; Kim NW; Kim ES
    Opt Lett; 2014 Jul; 39(14):4212-4. PubMed ID: 25121689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths.
    Park CK; Lee SS; Hwang YS
    Opt Express; 2009 Oct; 17(21):19047-54. PubMed ID: 20372640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.
    Shen X; Wang YJ; Chen HS; Xiao X; Lin YH; Javidi B
    Opt Lett; 2015 Feb; 40(4):538-41. PubMed ID: 25680144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal stack camera in all-in-focus imaging via an electrically tunable liquid crystal lens doped with multi-walled carbon nanotubes.
    Li H; Peng J; Pan F; Wu Y; Zhang Y; Xie X
    Opt Express; 2018 May; 26(10):12441-12454. PubMed ID: 29801282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory.
    Tang X; Hsieh J; Hagiwara A; Nilsen RA; Thibault JB; Drapkin E
    Phys Med Biol; 2005 Aug; 50(16):3889-905. PubMed ID: 16077234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented reality three-dimensional object visualization and recognition with axially distributed sensing.
    Markman A; Shen X; Hua H; Javidi B
    Opt Lett; 2016 Jan; 41(2):297-300. PubMed ID: 26766698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smart agile lens remote optical sensor for three-dimensional object shape measurements.
    Riza NA; Reza SA
    Appl Opt; 2010 Mar; 49(7):1139-50. PubMed ID: 20197811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correction of photon attenuation and collimator response for a body-contouring SPECT/CT imaging system.
    Seo Y; Wong KH; Sun M; Franc BL; Hawkins RA; Hasegawa BH
    J Nucl Med; 2005 May; 46(5):868-77. PubMed ID: 15872362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalization of three-dimensional N-ocular imaging systems under fixed resource constraints.
    Shin D; Daneshpanah M; Javidi B
    Opt Lett; 2012 Jan; 37(1):19-21. PubMed ID: 22212777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.