These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23027412)

  • 41. Attention.
    Callahan PM; Terry AV
    Handb Exp Pharmacol; 2015; 228():161-89. PubMed ID: 25977082
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Review of Oxytocin's Effects on the Positive, Negative, and Cognitive Domains of Schizophrenia.
    Feifel D; Shilling PD; MacDonald K
    Biol Psychiatry; 2016 Feb; 79(3):222-33. PubMed ID: 26410353
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mouse pharmacological models of cognitive disruption relevant to schizophrenia.
    Young JW; Powell SB; Geyer MA
    Neuropharmacology; 2012 Mar; 62(3):1381-90. PubMed ID: 21726569
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice.
    Young JW; Geyer MA; Rissling AJ; Sharp RF; Eyler LT; Asgaard GL; Light GA
    Transl Psychiatry; 2013 Nov; 3(11):e324. PubMed ID: 24217494
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Assessing cognitive function in clinical trials of schizophrenia.
    Barnett JH; Robbins TW; Leeson VC; Sahakian BJ; Joyce EM; Blackwell AD
    Neurosci Biobehav Rev; 2010 Jul; 34(8):1161-77. PubMed ID: 20105440
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Overview of animal models of schizophrenia.
    Powell SB; Geyer MA
    Curr Protoc Neurosci; 2007 Apr; Chapter 9():Unit 9.24. PubMed ID: 18428667
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A systematic review comparing sex differences in cognitive function in schizophrenia and in rodent models for schizophrenia, implications for improved therapeutic strategies.
    Leger M; Neill JC
    Neurosci Biobehav Rev; 2016 Sep; 68():979-1000. PubMed ID: 27344000
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CNTRICS final animal model task selection: control of attention.
    Lustig C; Kozak R; Sarter M; Young JW; Robbins TW
    Neurosci Biobehav Rev; 2013 Nov; 37(9 Pt B):2099-110. PubMed ID: 22683929
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of rodent models in the discovery of new treatments for schizophrenia: updating our strategy.
    Moore H
    Schizophr Bull; 2010 Nov; 36(6):1066-72. PubMed ID: 20870929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Peptide POP inhibitors for the treatment of the cognitive symptoms of schizophrenia.
    López A; Mendieta L; Prades R; Royo S; Tarragó T; Giralt E
    Future Med Chem; 2013 Sep; 5(13):1509-23. PubMed ID: 24024944
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Harnessing cognitive neuroscience to develop new treatments for improving cognition in schizophrenia: CNTRICS selected cognitive paradigms for animal models.
    Moore H; Geyer MA; Carter CS; Barch DM
    Neurosci Biobehav Rev; 2013 Nov; 37(9 Pt B):2087-91. PubMed ID: 24090823
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Developing translational animal models for symptoms of schizophrenia or bipolar mania.
    Geyer MA
    Neurotox Res; 2008 Aug; 14(1):71-8. PubMed ID: 18790726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cognitive endophenotypes, gene-environment interactions and experience-dependent plasticity in animal models of schizophrenia.
    Burrows EL; Hannan AJ
    Biol Psychol; 2016 Apr; 116():82-9. PubMed ID: 26687973
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Editorial: Current pro-cognitive therapeutic strategies for improved pharmacological treatment in schizophrenia.
    Wadenberg ML
    Curr Pharm Des; 2014; 20(31):5045. PubMed ID: 24345264
    [No Abstract]   [Full Text] [Related]  

  • 55. CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning.
    Ragland JD; Cohen NJ; Cools R; Frank MJ; Hannula DE; Ranganath C
    Schizophr Bull; 2012 Jan; 38(1):62-72. PubMed ID: 22102094
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translating basic attentional paradigms to schizophrenia research: reconsidering the nature of the deficits.
    Nuechterlein KH; Pashler HE; Subotnik KL
    Dev Psychopathol; 2006; 18(3):831-51. PubMed ID: 17152403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Developmental Manipulation-Induced Changes in Cognitive Functioning.
    Kaki S; DeRosa H; Timmerman B; Brummelte S; Hunter RG; Kentner AC
    Curr Top Behav Neurosci; 2023; 63():241-289. PubMed ID: 36029460
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cognitive 'Omics': Pattern-Based Validation of Potential Drug Targets.
    Gyertyán I
    Trends Pharmacol Sci; 2017 Feb; 38(2):113-126. PubMed ID: 27855993
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Animal models of schizophrenia.
    Young JW; Zhou X; Geyer MA
    Curr Top Behav Neurosci; 2010; 4():391-433. PubMed ID: 21312408
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Measuring the construct of executive control in schizophrenia: defining and validating translational animal paradigms for discovery research.
    Gilmour G; Arguello A; Bari A; Brown VJ; Carter C; Floresco SB; Jentsch DJ; Tait DS; Young JW; Robbins TW
    Neurosci Biobehav Rev; 2013 Nov; 37(9 Pt B):2125-40. PubMed ID: 22548905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.