These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

532 related articles for article (PubMed ID: 23027419)

  • 21. Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia.
    Kegeles LS; Abi-Dargham A; Zea-Ponce Y; Rodenhiser-Hill J; Mann JJ; Van Heertum RL; Cooper TB; Carlsson A; Laruelle M
    Biol Psychiatry; 2000 Oct; 48(7):627-40. PubMed ID: 11032974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The acute effects of NMDA antagonism: from the rodent to the human brain.
    Gunduz-Bruce H
    Brain Res Rev; 2009 May; 60(2):279-86. PubMed ID: 18703087
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development.
    Krystal JH; D'Souza DC; Mathalon D; Perry E; Belger A; Hoffman R
    Psychopharmacology (Berl); 2003 Sep; 169(3-4):215-33. PubMed ID: 12955285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glutamatergic dysfunction in Schizophrenia.
    Kruse AO; Bustillo JR
    Transl Psychiatry; 2022 Dec; 12(1):500. PubMed ID: 36463316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation.
    Laruelle M; Frankle WG; Narendran R; Kegeles LS; Abi-Dargham A
    Clin Ther; 2005; 27 Suppl A():S16-24. PubMed ID: 16198197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia.
    Goff DC; Coyle JT
    Am J Psychiatry; 2001 Sep; 158(9):1367-77. PubMed ID: 11532718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct and indirect interactions of the dopamine D₃ receptor with glutamate pathways: implications for the treatment of schizophrenia.
    Sokoloff P; Leriche L; Diaz J; Louvel J; Pumain R
    Naunyn Schmiedebergs Arch Pharmacol; 2013 Feb; 386(2):107-24. PubMed ID: 23001156
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications.
    Deutsch SI; Rosse RB; Schwartz BL; Mastropaolo J
    Clin Neuropharmacol; 2001; 24(1):43-9. PubMed ID: 11290881
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glutamatergic dysfunction hypothesis for schizophrenia.
    Coyle JT
    Harv Rev Psychiatry; 1996; 3(5):241-53. PubMed ID: 9384954
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recruitment of GABAA inhibition in rat neocortex is limited and not NMDA dependent.
    Ling DS; Benardo LS
    J Neurophysiol; 1995 Dec; 74(6):2329-35. PubMed ID: 8747195
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex.
    Moghaddam B; Adams B; Verma A; Daly D
    J Neurosci; 1997 Apr; 17(8):2921-7. PubMed ID: 9092613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment.
    Moghaddam B; Javitt D
    Neuropsychopharmacology; 2012 Jan; 37(1):4-15. PubMed ID: 21956446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMDA receptor and schizophrenia: a brief history.
    Coyle JT
    Schizophr Bull; 2012 Sep; 38(5):920-6. PubMed ID: 22987850
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Progress towards validating the NMDA receptor hypofunction hypothesis of schizophrenia.
    Lindsley CW; Shipe WD; Wolkenberg SE; Theberge CR; Williams DL; Sur C; Kinney GG
    Curr Top Med Chem; 2006; 6(8):771-85. PubMed ID: 16719816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NMDA receptor function in large-scale anticorrelated neural systems with implications for cognition and schizophrenia.
    Anticevic A; Gancsos M; Murray JD; Repovs G; Driesen NR; Ennis DJ; Niciu MJ; Morgan PT; Surti TS; Bloch MH; Ramani R; Smith MA; Wang XJ; Krystal JH; Corlett PR
    Proc Natl Acad Sci U S A; 2012 Oct; 109(41):16720-5. PubMed ID: 23012427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bidirectional Homeostatic Regulation of a Depression-Related Brain State by Gamma-Aminobutyric Acidergic Deficits and Ketamine Treatment.
    Ren Z; Pribiag H; Jefferson SJ; Shorey M; Fuchs T; Stellwagen D; Luscher B
    Biol Psychiatry; 2016 Sep; 80(6):457-468. PubMed ID: 27062563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A GABAergic cortical deficit dominates schizophrenia pathophysiology.
    Costa E; Davis JM; Dong E; Grayson DR; Guidotti A; Tremolizzo L; Veldic M
    Crit Rev Neurobiol; 2004; 16(1-2):1-23. PubMed ID: 15581395
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia.
    Greene R
    Hippocampus; 2001; 11(5):569-77. PubMed ID: 11732709
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance.
    Karlsgodt KH; Robleto K; Trantham-Davidson H; Jairl C; Cannon TD; Lavin A; Jentsch JD
    Biol Psychiatry; 2011 Jan; 69(1):28-34. PubMed ID: 21035792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia.
    Steullet P; Neijt HC; Cuénod M; Do KQ
    Neuroscience; 2006 Feb; 137(3):807-19. PubMed ID: 16330153
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.