These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 23027419)

  • 41. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia.
    Steullet P; Neijt HC; Cuénod M; Do KQ
    Neuroscience; 2006 Feb; 137(3):807-19. PubMed ID: 16330153
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The role of glutamatergic inputs onto parvalbumin-positive interneurons: relevance for schizophrenia.
    Rotaru DC; Lewis DA; Gonzalez-Burgos G
    Rev Neurosci; 2012 Jan; 23(1):97-109. PubMed ID: 22718616
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A fast synaptic potential mediated by NMDA and non-NMDA receptors.
    Wolszon LR; Pereda AE; Faber DS
    J Neurophysiol; 1997 Nov; 78(5):2693-706. PubMed ID: 9356419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations.
    Kocsis B
    Biol Psychiatry; 2012 Jun; 71(11):987-95. PubMed ID: 22055014
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Attenuation of the neuropsychiatric effects of ketamine with lamotrigine: support for hyperglutamatergic effects of N-methyl-D-aspartate receptor antagonists.
    Anand A; Charney DS; Oren DA; Berman RM; Hu XS; Cappiello A; Krystal JH
    Arch Gen Psychiatry; 2000 Mar; 57(3):270-6. PubMed ID: 10711913
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular mechanisms underlying glutamatergic dysfunction in schizophrenia: therapeutic implications.
    Gaspar PA; Bustamante ML; Silva H; Aboitiz F
    J Neurochem; 2009 Nov; 111(4):891-900. PubMed ID: 19686383
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of paliperidone and risperidone on extracellular glutamate in the prefrontal cortex of rats exposed to prenatal immune activation or MK-801.
    Roenker NL; Gudelsky G; Ahlbrand R; Bronson SL; Kern JR; Waterman H; Richtand NM
    Neurosci Lett; 2011 Aug; 500(3):167-71. PubMed ID: 21699956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses.
    Krystal JH; Karper LP; Seibyl JP; Freeman GK; Delaney R; Bremner JD; Heninger GR; Bowers MB; Charney DS
    Arch Gen Psychiatry; 1994 Mar; 51(3):199-214. PubMed ID: 8122957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel therapies for schizophrenia: understanding the glutamatergic synapse and potential targets for altering N-methyl-D-aspartate neurotransmission.
    Hui C; Wardwell B; Tsai GE
    Recent Pat CNS Drug Discov; 2009 Nov; 4(3):220-38. PubMed ID: 19891601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antischizophrenic activity independent of dopamine D2 blockade.
    Kalkman HO
    Expert Opin Ther Targets; 2002 Oct; 6(5):571-82. PubMed ID: 12387681
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Molecular pathology of schizophrenia].
    Uezato A; Nishikawa T
    Nihon Rinsho; 2013 Apr; 71(4):591-8. PubMed ID: 23678584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The NMDA antagonist model for schizophrenia: promise and pitfalls.
    Abi-Saab WM; D'Souza DC; Moghaddam B; Krystal JH
    Pharmacopsychiatry; 1998 Jul; 31 Suppl 2():104-9. PubMed ID: 9754841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bilateral blockade of NMDA receptors in anterior thalamus by dizocilpine (MK-801) injures pyramidal neurons in rat retrosplenial cortex.
    Tomitaka S; Tomitaka M; Tolliver BK; Sharp FR
    Eur J Neurosci; 2000 Apr; 12(4):1420-30. PubMed ID: 10762370
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ionotropic glutamate receptors as therapeutic targets in schizophrenia.
    Coyle JT; Tsai G; Goff DC
    Curr Drug Targets CNS Neurol Disord; 2002 Apr; 1(2):183-9. PubMed ID: 12769626
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NMDA hypofunction in the posterior cingulate as a model for schizophrenia: an exploratory ketamine administration study in fMRI.
    Northoff G; Richter A; Bermpohl F; Grimm S; Martin E; Marcar VL; Wahl C; Hell D; Boeker H
    Schizophr Res; 2005 Jan; 72(2-3):235-48. PubMed ID: 15560968
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Different effects of the NMDA receptor antagonists ketamine, MK-801, and memantine on postsynaptic density transcripts and their topography: role of Homer signaling, and implications for novel antipsychotic and pro-cognitive targets in psychosis.
    de Bartolomeis A; Sarappa C; Buonaguro EF; Marmo F; Eramo A; Tomasetti C; Iasevoli F
    Prog Neuropsychopharmacol Biol Psychiatry; 2013 Oct; 46():1-12. PubMed ID: 23800465
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Glutamatergic neurotransmission in schizophrenics].
    Bleich S; Bleich K; Wiltfang J; Maler JM; Kornhuber J
    Fortschr Neurol Psychiatr; 2001 Sep; 69 Suppl 2():S56-61. PubMed ID: 11533851
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Glutamate hypothesis of schizophrenia and targets for new antipsychotic drugs].
    Hashimoto K; Iyo M
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2002 Feb; 22(1):3-13. PubMed ID: 11917507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pathophysiologically based treatment interventions in schizophrenia.
    Lewis DA; Gonzalez-Burgos G
    Nat Med; 2006 Sep; 12(9):1016-22. PubMed ID: 16960576
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of glycine transporter 1: The yellow brick road to new schizophrenia therapy?
    Singer P; Dubroqua S; Yee BK
    Curr Pharm Des; 2015; 21(26):3771-87. PubMed ID: 26205290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.