These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 2302747)
1. Characterization of oxidative and reductive metabolism in vitro of nitrofluoranthenes by rat liver enzymes. Belisario MA; Pecce R; Della Morte R; Arena AR; Cecinato A; Ciccioli P; Staiano N Carcinogenesis; 1990 Feb; 11(2):213-8. PubMed ID: 2302747 [TBL] [Abstract][Full Text] [Related]
2. Participation of cytochrome P-450 in reductive metabolism of 1-nitropyrene by rat liver microsomes. Saito K; Kamataki T; Kato R Cancer Res; 1984 Aug; 44(8):3169-73. PubMed ID: 6430544 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of nitrofluoranthenes by rat lung subcellular fractions. Mitchell CE; Bechtold WE; Belinsky SA Carcinogenesis; 1993 Jun; 14(6):1161-6. PubMed ID: 8508503 [TBL] [Abstract][Full Text] [Related]
4. Use of monoclonal antibodies to characterize the induction response of the cytochrome P-450-dependent mixed function oxidase system to nitrofluoranthenes. Khan WA; Asokan P; Park SS; Gelboin HV; Bickers DR; Mukhtar H Carcinogenesis; 1987 Nov; 8(11):1679-84. PubMed ID: 3664959 [TBL] [Abstract][Full Text] [Related]
5. In vitro metabolism and DNA adduct formation from the mutagenic environmental contaminant 2-nitrofluoranthene. Herreno-Saenz D; Evans FE; Heinze T; Lewtas J; Fu PP Chem Res Toxicol; 1992; 5(6):863-9. PubMed ID: 1489938 [TBL] [Abstract][Full Text] [Related]
6. Reductive metabolism of aromatic nitro compounds including carcinogens by rabbit liver preparations. Tatsumi K; Kitamura S; Narai N Cancer Res; 1986 Mar; 46(3):1089-93. PubMed ID: 3943085 [TBL] [Abstract][Full Text] [Related]
7. Reductive metabolism of nitro-p-phenylenediamine by rat liver. Nakao M; Goto Y; Hiratsuka A; Watabe T Chem Pharm Bull (Tokyo); 1991 Jan; 39(1):177-80. PubMed ID: 2049801 [TBL] [Abstract][Full Text] [Related]
8. Reductive metabolism and protein binding of chromium(VI) by P450 protein enzymes. Mikalsen A; Alexander J; Wallin H; Ingelman-Sundberg M; Andersen RA Carcinogenesis; 1991 May; 12(5):825-31. PubMed ID: 1903091 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of 2-amino-alpha-carboline. A food-borne heterocyclic amine mutagen and carcinogen by human and rodent liver microsomes and by human cytochrome P4501A2. Raza H; King RS; Squires RB; Guengerich FP; Miller DW; Freeman JP; Lang NP; Kadlubar FF Drug Metab Dispos; 1996 Apr; 24(4):395-400. PubMed ID: 8801053 [TBL] [Abstract][Full Text] [Related]
10. Androgen-dependent renal microsomal cytochrome P-450 responsible for N-hydroxylation and mutagenic activation of 3-methoxy-4-aminoazobenzene in the BALB/c mouse. Degawa M; Miura S; Hashimoto Y Cancer Res; 1990 May; 50(9):2729-33. PubMed ID: 2328499 [TBL] [Abstract][Full Text] [Related]
11. One-electron reduction of mitomycin c by rat liver: role of cytochrome P-450 and NADPH-cytochrome P-450 reductase. Vromans RM; van de Straat R; Groeneveld M; Vermeulen NP Xenobiotica; 1990 Sep; 20(9):967-78. PubMed ID: 2122607 [TBL] [Abstract][Full Text] [Related]
12. Microsomal metabolism of arylamides by the rat and guinea pig--I. Oxidation of N-3-fluorenylacetamide at carbon-atom-9--a major metabolic reaction. Kaplan E; Gutmann HR; Emory TH Biochem Pharmacol; 1978; 27(11):1581-9. PubMed ID: 697900 [No Abstract] [Full Text] [Related]
13. Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases. Hammons GJ; Guengerich FP; Weis CC; Beland FA; Kadlubar FF Cancer Res; 1985 Aug; 45(8):3578-85. PubMed ID: 4016738 [TBL] [Abstract][Full Text] [Related]
14. Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride. Huskey SW; Dean DC; Miller RR; Rasmusson GH; Chiu SH Drug Metab Dispos; 1995 Oct; 23(10):1126-35. PubMed ID: 8654202 [TBL] [Abstract][Full Text] [Related]
15. Interstrain comparison of hepatic and renal microsomal carcinogen metabolism and liver S9-mediated mutagenicity in DA and Lewis rats phenotyped as poor and extensive metabolizers of debrisoquine. Hietanen E; Malaveille C; Camus AM; Béréziat JC; Brun G; Castegnaro M; Michelon J; Idle JR; Bartsch H Drug Metab Dispos; 1986; 14(1):118-26. PubMed ID: 2868854 [TBL] [Abstract][Full Text] [Related]
16. Ring-andN-hydroxylation of 2-acetamidofluorene by rat liver reconstituted cytochrome P-450 enzyme system. Lotlikar PD; Zaleski K Biochem J; 1975 Sep; 150(3):561-4. PubMed ID: 813632 [TBL] [Abstract][Full Text] [Related]
17. Metabolic activation of mutagenic tryptophan pyrolysis products by rat liver microsomes. Ishii K; Yamazoe Y; Kamataki T; Kato R Cancer Res; 1980 Jul; 40(7):2596-600. PubMed ID: 6771001 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of 14C-labelled 5-nitro-1,2,4-triazol-3-one by rat liver microsomes--evidence for the participation of cytochrome P-450. Le Campion L; Delaforge M; Noel JP; Ouazzani J Eur J Biochem; 1997 Sep; 248(2):401-6. PubMed ID: 9346295 [TBL] [Abstract][Full Text] [Related]
19. Roles of different cytochrome P450 enzymes in bioactivation of the potent hepatocarcinogen 3-methoxy-4-aminoazobenzene by rat and human liver microsomes. Yamazaki H; Degawa M; Funae Y; Imaoka S; Inui Y; Guengerich FP; Shimada T Carcinogenesis; 1991 Jan; 12(1):133-9. PubMed ID: 1988174 [TBL] [Abstract][Full Text] [Related]
20. Kinetics and cofactor requirements for the nitroreductive metabolism of 1-nitropyrene and 3-nitrofluoranthene by rabbit liver aldehyde oxidase. Bauer SL; Howard PC Carcinogenesis; 1991 Sep; 12(9):1545-9. PubMed ID: 1893513 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]