These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 23027632)

  • 1. Neuromechanic: a computational platform for simulation and analysis of the neural control of movement.
    Bunderson NE; Bingham JT; Sohn MH; Ting LH; Burkholder TJ
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1015-27. PubMed ID: 23027632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement.
    Ting LH; Chvatal SA; Safavynia SA; McKay JL
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1003-14. PubMed ID: 23027631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models.
    Halloran JP; Erdemir A; van den Bogert AJ
    J Biomech Eng; 2009 Jan; 131(1):011014. PubMed ID: 19045930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and identification of human neuromusculoskeletal network based on biomechanical property of muscle.
    Murai A; Yamane K; Nakamura Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3706-9. PubMed ID: 19163517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based estimation of muscle forces exerted during movements.
    Erdemir A; McLean S; Herzog W; van den Bogert AJ
    Clin Biomech (Bristol, Avon); 2007 Feb; 22(2):131-54. PubMed ID: 17070969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modular control of human walking: a simulation study.
    Neptune RR; Clark DJ; Kautz SA
    J Biomech; 2009 Jun; 42(9):1282-7. PubMed ID: 19394023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neuromusculoskeletal tracking method for estimating individual muscle forces in human movement.
    Seth A; Pandy MG
    J Biomech; 2007; 40(2):356-66. PubMed ID: 16513124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of muscle short-range stiffness to initial changes in joint kinetics and kinematics during perturbations to standing balance: A simulation study.
    De Groote F; Allen JL; Ting LH
    J Biomech; 2017 Apr; 55():71-77. PubMed ID: 28259465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of aperiodic bipedal sprinting.
    Celik H; Piazza SJ
    J Biomech Eng; 2013 Aug; 135(8):81008. PubMed ID: 23722442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and movement of a one-link neuromusculoskeletal sagittal arm.
    Dinneen JA; Hemami H
    IEEE Trans Biomed Eng; 1993 Jun; 40(6):541-8. PubMed ID: 8262535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.
    Bae TS; Loan P; Choi K; Hong D; Mun MS
    J Biomech Eng; 2010 Dec; 132(12):121011. PubMed ID: 21142325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization and evaluation of a proportional derivative controller for planar arm movement.
    Jagodnik KM; van den Bogert AJ
    J Biomech; 2010 Apr; 43(6):1086-91. PubMed ID: 20097345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is my model good enough? Best practices for verification and validation of musculoskeletal models and simulations of movement.
    Hicks JL; Uchida TK; Seth A; Rajagopal A; Delp SL
    J Biomech Eng; 2015 Feb; 137(2):020905. PubMed ID: 25474098
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The inverse dynamics problem of neuromuscular control.
    Hatze H
    Biol Cybern; 2000 Feb; 82(2):133-41. PubMed ID: 10664100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal estimation of dynamically consistent kinematics and kinetics for forward dynamic simulation of gait.
    Remy CD; Thelen DG
    J Biomech Eng; 2009 Mar; 131(3):031005. PubMed ID: 19154064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.
    He X; Du YF; Lan N
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jul; 21(4):634-47. PubMed ID: 23268385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved inverse dynamics formulation for estimation of external and internal loads during human sagittal plane movements.
    Blajer W; Dziewiecki K; Mazur Z
    Comput Methods Biomech Biomed Engin; 2015; 18(4):362-75. PubMed ID: 23758087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.