BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

845 related articles for article (PubMed ID: 23027636)

  • 1. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanics of the foot Part 1: a continuum framework for evaluating soft tissue stiffening in the pathologic foot.
    Fernandez JW; Ul Haque MZ; Hunter PJ; Mithraratne K
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1056-70. PubMed ID: 23027635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A lumped-parameter model to investigate the effect of plantar pressure on arterial blood flow in a diabetic foot.
    Hahn C; Mahajan A; Chu T; Schoen M
    Proc Inst Mech Eng H; 2007 Aug; 221(6):677-86. PubMed ID: 17937206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional finite element analysis of the foot during standing--a material sensitivity study.
    Cheung JT; Zhang M; Leung AK; Fan YB
    J Biomech; 2005 May; 38(5):1045-54. PubMed ID: 15797586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot.
    Gefen A
    Med Eng Phys; 2003 Jul; 25(6):491-9. PubMed ID: 12787987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2015 Oct; 229(10):713-20. PubMed ID: 26405096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A two-phase model of plantar tissue: a step toward prediction of diabetic foot ulceration.
    Sciumè G; Boso DP; Gray WG; Cobelli C; Schrefler BA
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1153-69. PubMed ID: 24841993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease.
    Wan J; Steele B; Spicer SA; Strohband S; Feijóo GR; Hughes TJ; Taylor CA
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):195-206. PubMed ID: 12186712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Constitutive formulation and numerical analysis of the biomechanical behaviour of forefoot plantar soft tissue.
    Fontanella CG; Favaretto E; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2014 Sep; 228(9):942-51. PubMed ID: 25313025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient semi-implicit method for three-dimensional non-hydrostatic flows in compliant arterial vessels.
    Fambri F; Dumbser M; Casulli V
    Int J Numer Method Biomed Eng; 2014 Nov; 30(11):1170-98. PubMed ID: 24842268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanics of tarsal disintegration and plantar ulcers in leprosy by stress analysis in three dimensional foot models.
    Patil KM; Jacob S
    Indian J Lepr; 2000; 72(1):69-86. PubMed ID: 10935188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.
    Perktold K; Rappitsch G
    J Biomech; 1995 Jul; 28(7):845-56. PubMed ID: 7657682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution.
    Kabinejadian F; Ghista DN
    Med Eng Phys; 2012 Sep; 34(7):860-72. PubMed ID: 22032834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional foot modeling and analysis of stresses in normal and early stage Hansen's disease with muscle paralysis.
    Jacob S; Patil MK
    J Rehabil Res Dev; 1999 Jul; 36(3):252-63. PubMed ID: 10659808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance.
    Actis RL; Ventura LB; Smith KE; Commean PK; Lott DJ; Pilgram TK; Mueller MJ
    Med Biol Eng Comput; 2006 Aug; 44(8):653-63. PubMed ID: 16937207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.