These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 23027642)

  • 1. Effect of low temperature upon vitality of Saccharomyces cerevisiae phospholipid mutants.
    Redón M; Borrull A; López M; Salvadó Z; Cordero R; Mas A; Guillamón JM; Rozès N
    Yeast; 2012 Oct; 29(10):443-52. PubMed ID: 23027642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures.
    López-Malo M; Chiva R; Rozes N; Guillamon JM
    Int J Food Microbiol; 2013 Mar; 162(1):26-36. PubMed ID: 23340385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the Saccharomyces cerevisiae opi3 gene: effects on phospholipid methylation, growth and cross-pathway regulation of inositol synthesis.
    McGraw P; Henry SA
    Genetics; 1989 Jun; 122(2):317-30. PubMed ID: 2670666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of phosphatidylethanolamine methyltransferase and phospholipid methyltransferase by phospholipid precursors in Saccharomyces cerevisiae.
    Gaynor PM; Gill T; Toutenhoofd S; Summers EF; McGraw P; Homann MJ; Henry SA; Carman GM
    Biochim Biophys Acta; 1991 Nov; 1090(3):326-32. PubMed ID: 1954254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast mutant defective in phosphatidylcholine synthesis.
    Greenberg ML; Klig LS; Letts VA; Loewy BS; Henry SA
    J Bacteriol; 1983 Feb; 153(2):791-9. PubMed ID: 6337128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phospholipid synthesis in phosphatidylserine synthase-deficient (chol) mutants of Saccharomyces cerevisiae.
    Letts VA; Henry SA
    J Bacteriol; 1985 Aug; 163(2):560-7. PubMed ID: 2991194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phosphatidylcholine to phosphatidylethanolamine ratio of Saccharomyces cerevisiae varies with the growth phase.
    Janssen MJ; Koorengevel MC; de Kruijff B; de Kroon AI
    Yeast; 2000 May; 16(7):641-50. PubMed ID: 10806426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular architecture and biophysical properties of phospholipids during thermal adaptation in fish: an experimental and model study.
    Fodor E; Jones RH; Buda C; Kitajka K; Dey I; Farkas T
    Lipids; 1995 Dec; 30(12):1119-26. PubMed ID: 8614302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of membrane phosphatidylethanolamine-deficiency/phosphatidylcholine-excess on the metabolism of phosphatidylcholine and phosphatidylethanolamine.
    Fisk HA; Kano-Sueoka T
    J Cell Physiol; 1992 Dec; 153(3):589-95. PubMed ID: 1447319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae.
    Gohil VM; Thompson MN; Greenberg ML
    J Biol Chem; 2005 Oct; 280(42):35410-6. PubMed ID: 16036913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote.
    Boumann HA; Gubbens J; Koorengevel MC; Oh CS; Martin CE; Heck AJ; Patton-Vogt J; Henry SA; de Kruijff B; de Kroon AI
    Mol Biol Cell; 2006 Feb; 17(2):1006-17. PubMed ID: 16339082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saccharomyces cerevisiae cho2 mutants are deficient in phospholipid methylation and cross-pathway regulation of inositol synthesis.
    Summers EF; Letts VA; McGraw P; Henry SA
    Genetics; 1988 Dec; 120(4):909-22. PubMed ID: 3066687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylcholine Supply to Peroxisomes of the Yeast Saccharomyces cerevisiae.
    Flis VV; Fankl A; Ramprecht C; Zellnig G; Leitner E; Hermetter A; Daum G
    PLoS One; 2015; 10(8):e0135084. PubMed ID: 26241051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the mode of action of the antimalarial choline analog G25 in Plasmodium falciparum and Saccharomyces cerevisiae.
    Roggero R; Zufferey R; Minca M; Richier E; Calas M; Vial H; Ben Mamoun C
    Antimicrob Agents Chemother; 2004 Aug; 48(8):2816-24. PubMed ID: 15273086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylethanolamine has an essential role in Saccharomyces cerevisiae that is independent of its ability to form hexagonal phase structures.
    Storey MK; Clay KL; Kutateladze T; Murphy RC; Overduin M; Voelker DR
    J Biol Chem; 2001 Dec; 276(51):48539-48. PubMed ID: 11602607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and expression of a human choline/ethanolaminephosphotransferase: synthesis of phosphatidylcholine and phosphatidylethanolamine.
    Henneberry AL; McMaster CR
    Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):291-8. PubMed ID: 10191259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acyl-chain remodeling of dioctanoyl-phosphatidylcholine in Saccharomyces cerevisiae mutant defective in de novo and salvage phosphatidylcholine synthesis.
    Kishino H; Eguchi H; Takagi K; Horiuchi H; Fukuda R; Ohta A
    Biochem Biophys Res Commun; 2014 Mar; 445(2):289-93. PubMed ID: 24491568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline restores respiration in Psd1-deficient yeast by replenishing mitochondrial phosphatidylethanolamine.
    Iadarola DM; Joshi A; Caldwell CB; Gohil VM
    J Biol Chem; 2021; 296():100539. PubMed ID: 33722607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Kennedy phospholipid biosynthesis pathways are refractory to genetic disruption in Plasmodium berghei and therefore appear essential in blood stages.
    Déchamps S; Wengelnik K; Berry-Sterkers L; Cerdan R; Vial HJ; Gannoun-Zaki L
    Mol Biochem Parasitol; 2010 Oct; 173(2):69-80. PubMed ID: 20478340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of lipid head group entry to the Kennedy pathway by FLVCR1.
    Son Y; Kenny TC; Khan A; Birsoy K; Hite RK
    Nature; 2024 May; 629(8012):710-716. PubMed ID: 38693265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.