BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 23027926)

  • 1. Role for urea in nitrification by polar marine Archaea.
    Alonso-Sáez L; Waller AS; Mende DR; Bakker K; Farnelid H; Yager PL; Lovejoy C; Tremblay JÉ; Potvin M; Heinrich F; Estrada M; Riemann L; Bork P; Pedrós-Alió C; Bertilsson S
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17989-94. PubMed ID: 23027926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment.
    Kitzinger K; Padilla CC; Marchant HK; Hach PF; Herbold CW; Kidane AT; Könneke M; Littmann S; Mooshammer M; Niggemann J; Petrov S; Richter A; Stewart FJ; Wagner M; Kuypers MMM; Bristow LA
    Nat Microbiol; 2019 Feb; 4(2):234-243. PubMed ID: 30531977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urea uptake and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and winter seasons.
    Connelly TL; Baer SE; Cooper JT; Bronk DA; Wawrik B
    Appl Environ Microbiol; 2014 Oct; 80(19):6013-22. PubMed ID: 25063662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters.
    Tolar BB; Ross MJ; Wallsgrove NJ; Liu Q; Aluwihare LI; Popp BN; Hollibaugh JT
    ISME J; 2016 Nov; 10(11):2605-2619. PubMed ID: 27187795
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia-oxidizing Archaea in the Arctic Ocean and Antarctic coastal waters.
    Kalanetra KM; Bano N; Hollibaugh JT
    Environ Microbiol; 2009 Sep; 11(9):2434-45. PubMed ID: 19601959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of urea-derived nitrogen by thaumarchaeota-dominated marine nitrifying communities.
    Tolar BB; Wallsgrove NJ; Popp BN; Hollibaugh JT
    Environ Microbiol; 2017 Dec; 19(12):4838-4850. PubMed ID: 27422798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume.
    Baker BJ; Lesniewski RA; Dick GJ
    ISME J; 2012 Dec; 6(12):2269-79. PubMed ID: 22695863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Significance of archaeal nitrification in hypoxic waters of the Baltic Sea.
    Berg C; Vandieken V; Thamdrup B; Jürgens K
    ISME J; 2015 Jun; 9(6):1319-32. PubMed ID: 25423026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes.
    Ahlgren NA; Fuchsman CA; Rocap G; Fuhrman JA
    ISME J; 2019 Mar; 13(3):618-631. PubMed ID: 30315316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thaumarchaeotal signature gene distribution in sediments of the northern South China Sea: an indicator of the metabolic intersection of the marine carbon, nitrogen, and phosphorus cycles?
    Dang H; Zhou H; Yang J; Ge H; Jiao N; Luan X; Zhang C; Klotz MG
    Appl Environ Microbiol; 2013 Apr; 79(7):2137-47. PubMed ID: 23335759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterotrophic Thaumarchaea with Small Genomes Are Widespread in the Dark Ocean.
    Aylward FO; Santoro AE
    mSystems; 2020 Jun; 5(3):. PubMed ID: 32546674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton.
    Georges AA; El-Swais H; Craig SE; Li WK; Walsh DA
    ISME J; 2014 Jun; 8(6):1301-13. PubMed ID: 24401863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.
    Lu L; Jia Z
    Environ Microbiol; 2013 Jun; 15(6):1795-809. PubMed ID: 23298189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of autotrophic marine planktonic thaumarchaeota in the East China Sea.
    Hu A; Yang Z; Yu CP; Jiao N
    PLoS One; 2013; 8(4):e61087. PubMed ID: 23565298
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil.
    Tourna M; Stieglmeier M; Spang A; Könneke M; Schintlmeister A; Urich T; Engel M; Schloter M; Wagner M; Richter A; Schleper C
    Proc Natl Acad Sci U S A; 2011 May; 108(20):8420-5. PubMed ID: 21525411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abundance, diversity, and activity of ammonia-oxidizing prokaryotes in the coastal Arctic ocean in summer and winter.
    Christman GD; Cottrell MT; Popp BN; Gier E; Kirchman DL
    Appl Environ Microbiol; 2011 Mar; 77(6):2026-34. PubMed ID: 21239542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea.
    Lu L; Han W; Zhang J; Wu Y; Wang B; Lin X; Zhu J; Cai Z; Jia Z
    ISME J; 2012 Oct; 6(10):1978-84. PubMed ID: 22592820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metagenomic analysis of a complex marine planktonic thaumarchaeal community from the Gulf of Maine.
    Tully BJ; Nelson WC; Heidelberg JF
    Environ Microbiol; 2012 Jan; 14(1):254-67. PubMed ID: 22050608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.
    Nishizawa M; Sakai S; Konno U; Nakahara N; Takaki Y; Saito Y; Imachi H; Tasumi E; Makabe A; Koba K; Takai K
    Appl Environ Microbiol; 2016 Aug; 82(15):4492-504. PubMed ID: 27208107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metagenomic characterization of a novel non-ammonia-oxidizing Thaumarchaeota from hadal sediment.
    Zhang RY; Wang YR; Liu RL; Rhee SK; Zhao GP; Quan ZX
    Microbiome; 2024 Jan; 12(1):7. PubMed ID: 38191433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.