These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 23028218)
21. Alkynyl-functionalization of hydroxypropyl cellulose and thermoresponsive hydrogel thereof prepared with P(NIPAAm-co-HEMAPCL). Miao L; Hu J; Lu M; Tu Y; Chen X; Li Y; Lin S; Li F; Hu S Carbohydr Polym; 2016 Feb; 137():433-440. PubMed ID: 26686148 [TBL] [Abstract][Full Text] [Related]
22. Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study. Wu DQ; Zhu J; Han H; Zhang JZ; Wu FF; Qin XH; Yu JY Acta Biomater; 2018 Jan; 65():305-316. PubMed ID: 28867649 [TBL] [Abstract][Full Text] [Related]
23. Thermal behavior of magnetically modalized poly(N-isopropylacrylamide)-chitosan based nanohydrogel. Jaiswal MK; Banerjee R; Pradhan P; Bahadur D Colloids Surf B Biointerfaces; 2010 Nov; 81(1):185-94. PubMed ID: 20702074 [TBL] [Abstract][Full Text] [Related]
24. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates. Zhao H; Gao J; Liu R; Zhao S Carbohydr Res; 2016 Jun; 428():79-86. PubMed ID: 27152631 [TBL] [Abstract][Full Text] [Related]
25. High oxygen preservation hydrogels to augment cell survival under hypoxic condition. Niu H; Li C; Guan Y; Dang Y; Li X; Fan Z; Shen J; Ma L; Guan J Acta Biomater; 2020 Mar; 105():56-67. PubMed ID: 31954189 [TBL] [Abstract][Full Text] [Related]
26. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310 [TBL] [Abstract][Full Text] [Related]
27. Thermo-responsive peptide-modified hydrogels for tissue regeneration. Stile RA; Healy KE Biomacromolecules; 2001; 2(1):185-94. PubMed ID: 11749171 [TBL] [Abstract][Full Text] [Related]
28. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels. Li Z; Guo X; Matsushita S; Guan J Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413 [TBL] [Abstract][Full Text] [Related]
29. Thermoresponsive, in situ cross-linkable hydrogels based on N-isopropylacrylamide: fabrication, characterization and mesenchymal stem cell encapsulation. Klouda L; Perkins KR; Watson BM; Hacker MC; Bryant SJ; Raphael RM; Kasper FK; Mikos AG Acta Biomater; 2011 Apr; 7(4):1460-7. PubMed ID: 21187170 [TBL] [Abstract][Full Text] [Related]
30. Poly(N-isopropylacrylamide-co-methacrylic acid) pH/thermo-responsive porous hydrogels as self-regulated drug delivery system. Constantin M; Bucatariu S; Harabagiu V; Popescu I; Ascenzi P; Fundueanu G Eur J Pharm Sci; 2014 Oct; 62():86-95. PubMed ID: 24844700 [TBL] [Abstract][Full Text] [Related]
31. Photopolymerized thermosensitive hydrogels: synthesis, degradation, and cytocompatibility. Vermonden T; Fedorovich NE; van Geemen D; Alblas J; van Nostrum CF; Dhert WJ; Hennink WE Biomacromolecules; 2008 Mar; 9(3):919-26. PubMed ID: 18288801 [TBL] [Abstract][Full Text] [Related]
33. Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. Effects of linear poly(acrylic acid) chains on rheology. Stile RA; Chung E; Burghardt WR; Healy KE J Biomater Sci Polym Ed; 2004; 15(7):865-78. PubMed ID: 15318797 [TBL] [Abstract][Full Text] [Related]
34. Poly(N-isopropylacrylamide)-based semi-interpenetrating polymer networks for tissue engineering applications. 1. Effects of linear poly(acrylic acid) chains on phase behavior. Stile RA; Healy KE Biomacromolecules; 2002; 3(3):591-600. PubMed ID: 12005532 [TBL] [Abstract][Full Text] [Related]
35. Thermosensitive, fast gelling, photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Niu H; Li X; Li H; Fan Z; Ma J; Guan J Acta Biomater; 2019 Jan; 83():96-108. PubMed ID: 30541703 [TBL] [Abstract][Full Text] [Related]
36. Synthesis and in vitro evaluation of thermosensitive hydrogel scaffolds based on (PNIPAAm-PCL-PEG-PCL-PNIPAAm)/Gelatin and (PCL-PEG-PCL)/Gelatin for use in cartilage tissue engineering. Saghebasl S; Davaran S; Rahbarghazi R; Montaseri A; Salehi R; Ramazani A J Biomater Sci Polym Ed; 2018 Jul; 29(10):1185-1206. PubMed ID: 29490569 [TBL] [Abstract][Full Text] [Related]
37. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Ankareddi I; Brazel CS Int J Pharm; 2007 May; 336(2):241-7. PubMed ID: 17234371 [TBL] [Abstract][Full Text] [Related]
38. Activity and stability of urease entrapped in thermosensitive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel. Bayramoglu G; Arica MY Bioprocess Biosyst Eng; 2014 Feb; 37(2):235-43. PubMed ID: 23771178 [TBL] [Abstract][Full Text] [Related]
39. In vitro biocompatibility of magnetic thermo-responsive nanohydrogel particles of poly(N-isopropylacrylamide-co-acrylic acid) with Fe3O4 cores: effect of particle size and chemical composition. Chou FY; Lai JY; Shih CM; Tsai MC; Lue SJ Colloids Surf B Biointerfaces; 2013 Apr; 104():66-74. PubMed ID: 23298590 [TBL] [Abstract][Full Text] [Related]
40. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers. Wang F; Li Z; Khan M; Tamama K; Kuppusamy P; Wagner WR; Sen CK; Guan J Acta Biomater; 2010 Jun; 6(6):1978-91. PubMed ID: 20004745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]