These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 23028276)

  • 1. Speeded reaching movements around invisible obstacles.
    Hudson TE; Wolfe U; Maloney LT
    PLoS Comput Biol; 2012; 8(9):e1002676. PubMed ID: 23028276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning reaching and grasping movements: the problem of obstacle avoidance.
    Vaughan J; Rosenbaum DA; Meulenbroek RG
    Motor Control; 2001 Apr; 5(2):116-35. PubMed ID: 11303109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Obstacle avoidance and a perturbation sensitivity model for motor planning.
    Sabes PN; Jordan MI
    J Neurosci; 1997 Sep; 17(18):7119-28. PubMed ID: 9278546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naturalistic arm movements during obstacle avoidance in 3D and the identification of movement primitives.
    Grimme B; Lipinski J; Schöner G
    Exp Brain Res; 2012 Oct; 222(3):185-200. PubMed ID: 22996050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning robotic eye-arm-hand coordination from human demonstration: a coupled dynamical systems approach.
    Lukic L; Santos-Victor J; Billard A
    Biol Cybern; 2014 Apr; 108(2):223-48. PubMed ID: 24570352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Limits to human movement planning with delayed and unpredictable onset of needed information.
    Trommershäuser J; Mattis J; Maloney LT; Landy MS
    Exp Brain Res; 2006 Nov; 175(2):276-84. PubMed ID: 16736179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missing in action: the effect of obstacle position and size on avoidance while reaching.
    Chapman CS; Goodale MA
    Exp Brain Res; 2008 Oct; 191(1):83-97. PubMed ID: 18716765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOVEREIGN: An autonomous neural system for incrementally learning planned action sequences to navigate towards a rewarded goal.
    Gnadt W; Grossberg S
    Neural Netw; 2008 Jun; 21(5):699-758. PubMed ID: 17996419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimality of Upper-Arm Reaching Trajectories Based on the Expected Value of the Metabolic Energy Cost.
    Taniai Y; Nishii J
    Neural Comput; 2015 Aug; 27(8):1721-37. PubMed ID: 26079750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coordinated turn-and-reach movements. I. Anticipatory compensation for self-generated coriolis and interaction torques.
    Pigeon P; Bortolami SB; DiZio P; Lackner JR
    J Neurophysiol; 2003 Jan; 89(1):276-89. PubMed ID: 12522179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitory control of reaching movements in humans.
    Mirabella G; Pani P; Paré M; Ferraina S
    Exp Brain Res; 2006 Sep; 174(2):240-55. PubMed ID: 16636792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Planning multiple movements within a fixed time limit: the cost of constrained time allocation in a visuo-motor task.
    Zhang H; Wu SW; Maloney LT
    J Vis; 2010 Jun; 10(6):1. PubMed ID: 20884550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of salience and reward information during saccadic decisions under risk.
    Stritzke M; Trommershäuser J; Gegenfurtner KR
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):B1-13. PubMed ID: 19884911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of human arm movements in two dimensions: paths and joint control in avoiding simple linear obstacles.
    Dean J; Brüwer M
    Exp Brain Res; 1994; 97(3):497-514. PubMed ID: 8187861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements.
    Hermens F; Gielen S
    Exp Brain Res; 2004 Dec; 159(3):340-8. PubMed ID: 15526192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimality of human movement under natural variations of visual-motor uncertainty.
    Gepshtein S; Seydell A; Trommershäuser J
    J Vis; 2007 Sep; 7(5):13.1-18. PubMed ID: 18217853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of object identity on obstacle avoidance reaching behaviour.
    de Haan AM; Van der Stigchel S; Nijnens CM; Dijkerman HC
    Acta Psychol (Amst); 2014 Jul; 150():94-9. PubMed ID: 24859673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manual obstacle avoidance takes into account visual uncertainty, motor noise, and biomechanical costs.
    Cohen RG; Biddle JC; Rosenbaum DA
    Exp Brain Res; 2010 Mar; 201(3):587-92. PubMed ID: 19851762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using distributed partial memories to improve self-organizing collective movements.
    Winder R; Reggia JA
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1697-707. PubMed ID: 15462437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of trajectory planning models for arm-reaching movements based on energy cost.
    Nishii J; Taniai Y
    Neural Comput; 2009 Sep; 21(9):2634-47. PubMed ID: 19548798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.