BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

453 related articles for article (PubMed ID: 23028363)

  • 21. Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells.
    Golding MC; Magri LS; Zhang L; Lalone SA; Higgins MJ; Mann MR
    Development; 2011 Sep; 138(17):3667-78. PubMed ID: 21775415
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rescue of placental phenotype in a mechanistic model of Beckwith-Wiedemann syndrome.
    Oh-McGinnis R; Bogutz AB; Lee KY; Higgins MJ; Lefebvre L
    BMC Dev Biol; 2010 May; 10():50. PubMed ID: 20459838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NF-Y regulates the antisense promoter, bidirectional silencing, and differential epigenetic marks of the Kcnq1 imprinting control region.
    Pandey RR; Ceribelli M; Singh PB; Ericsson J; Mantovani R; Kanduri C
    J Biol Chem; 2004 Dec; 279(50):52685-93. PubMed ID: 15459184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer.
    Higashimoto K; Soejima H; Saito T; Okumura K; Mukai T
    Cytogenet Genome Res; 2006; 113(1-4):306-12. PubMed ID: 16575194
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into the molecular mechanism for type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets.
    Travers ME; Mackay DJ; Dekker Nitert M; Morris AP; Lindgren CM; Berry A; Johnson PR; Hanley N; Groop LC; McCarthy MI; Gloyn AL
    Diabetes; 2013 Mar; 62(3):987-92. PubMed ID: 23139357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A differentially methylated region within the gene Kcnq1 functions as an imprinted promoter and silencer.
    Mancini-DiNardo D; Steele SJ; Ingram RS; Tilghman SM
    Hum Mol Genet; 2003 Feb; 12(3):283-94. PubMed ID: 12554682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kcnq1ot1: a chromatin regulatory RNA.
    Kanduri C
    Semin Cell Dev Biol; 2011 Jun; 22(4):343-50. PubMed ID: 21345374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An extended domain of Kcnq1ot1 silencing revealed by an imprinted fluorescent reporter.
    Jones MJ; Bogutz AB; Lefebvre L
    Mol Cell Biol; 2011 Jul; 31(14):2827-37. PubMed ID: 21576366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleoporin 107, 62 and 153 mediate Kcnq1ot1 imprinted domain regulation in extraembryonic endoderm stem cells.
    Sachani SS; Landschoot LS; Zhang L; White CR; MacDonald WA; Golding MC; Mann MRW
    Nat Commun; 2018 Jul; 9(1):2795. PubMed ID: 30022050
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases.
    Chiesa N; De Crescenzo A; Mishra K; Perone L; Carella M; Palumbo O; Mussa A; Sparago A; Cerrato F; Russo S; Lapi E; Cubellis MV; Kanduri C; Cirillo Silengo M; Riccio A; Ferrero GB
    Hum Mol Genet; 2012 Jan; 21(1):10-25. PubMed ID: 21920939
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonallelic transcriptional roles of CTCF and cohesins at imprinted loci.
    Lin S; Ferguson-Smith AC; Schultz RM; Bartolomei MS
    Mol Cell Biol; 2011 Aug; 31(15):3094-104. PubMed ID: 21628529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome.
    Naveh NSS; Deegan DF; Huhn J; Traxler E; Lan Y; Weksberg R; Ganguly A; Engel N; Kalish JM
    Nucleic Acids Res; 2021 Jun; 49(11):6315-6330. PubMed ID: 34107024
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relevance of genomic imprinting in intrauterine human growth expression of CDKN1C, H19, IGF2, KCNQ1 and PHLDA2 imprinted genes.
    Cordeiro A; Neto AP; Carvalho F; Ramalho C; Dória S
    J Assist Reprod Genet; 2014 Oct; 31(10):1361-8. PubMed ID: 24986528
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Domain-specific response of imprinted genes to reduced DNMT1.
    Weaver JR; Sarkisian G; Krapp C; Mager J; Mann MR; Bartolomei MS
    Mol Cell Biol; 2010 Aug; 30(16):3916-28. PubMed ID: 20547750
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Epigenetics of imprinted long noncoding RNAs.
    Mohammad F; Mondal T; Kanduri C
    Epigenetics; 2009 Jul; 4(5):277-86. PubMed ID: 19617707
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation.
    Singh P; Wu X; Lee DH; Li AX; Rauch TA; Pfeifer GP; Mann JR; Szabó PE
    Mol Cell Biol; 2011 Apr; 31(8):1757-70. PubMed ID: 21321082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sequence and functional comparison in the Beckwith-Wiedemann region: implications for a novel imprinting centre and extended imprinting.
    Engemann S; Strödicke M; Paulsen M; Franck O; Reinhardt R; Lane N; Reik W; Walter J
    Hum Mol Genet; 2000 Nov; 9(18):2691-706. PubMed ID: 11063728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of imprinting in clusters: noncoding RNAs versus insulators.
    Wan LB; Bartolomei MS
    Adv Genet; 2008; 61():207-23. PubMed ID: 18282507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A differentially methylated imprinting control region within the Kcnq1 locus harbors a methylation-sensitive chromatin insulator.
    Kanduri C; Fitzpatrick G; Mukhopadhyay R; Kanduri M; Lobanenkov V; Higgins M; Ohlsson R
    J Biol Chem; 2002 May; 277(20):18106-10. PubMed ID: 11877438
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intergenerational impact of paternal lifetime exposures to both folic acid deficiency and supplementation on reproductive outcomes and imprinted gene methylation.
    Ly L; Chan D; Aarabi M; Landry M; Behan NA; MacFarlane AJ; Trasler J
    Mol Hum Reprod; 2017 Jul; 23(7):461-477. PubMed ID: 28535307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.