These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 23028438)

  • 1. Manipulating fatty acid biosynthesis in microalgae for biofuel through protein-protein interactions.
    Blatti JL; Beld J; Behnke CA; Mendez M; Mayfield SP; Burkart MD
    PLoS One; 2012; 7(9):e42949. PubMed ID: 23028438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric Fatty Acyl-Acyl Carrier Protein Thioesterases Provide Mechanistic Insight into Enzyme Specificity and Expression.
    Ziesack M; Rollins N; Shah A; Dusel B; Webster G; Silver PA; Way JC
    Appl Environ Microbiol; 2018 May; 84(10):. PubMed ID: 29549102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii.
    Tan KW; Lee YK
    J Biotechnol; 2017 Apr; 247():60-67. PubMed ID: 28279815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.
    Blatti JL; Michaud J; Burkart MD
    Curr Opin Chem Biol; 2013 Jun; 17(3):496-505. PubMed ID: 23683348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In search of actionable targets for agrigenomics and microalgal biofuel production: sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein.
    Misra N; Panda PK
    OMICS; 2013 Apr; 17(4):173-86. PubMed ID: 23496307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of acyl-ACP-thioesterases and β-ketoacyl-ACP-synthases revealed by protein-protein interactions.
    Beld J; Blatti JL; Behnke C; Mendez M; Burkart MD
    J Appl Phycol; 2014 Aug; 26(4):1619-1629. PubMed ID: 25110394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic and experimental characterization of an acyl-ACP thioesterase family reveals significant diversity in enzymatic specificity and activity.
    Jing F; Cantu DC; Tvaruzkova J; Chipman JP; Nikolau BJ; Yandeau-Nelson MD; Reilly PJ
    BMC Biochem; 2011 Aug; 12():44. PubMed ID: 21831316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.
    Jing F; Zhao L; Yandeau-Nelson MD; Nikolau BJ
    Nat Commun; 2018 Feb; 9(1):860. PubMed ID: 29491418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Active C
    Hernández Lozada NJ; Lai RY; Simmons TR; Thomas KA; Chowdhury R; Maranas CD; Pfleger BF
    ACS Synth Biol; 2018 Sep; 7(9):2205-2215. PubMed ID: 30064208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of xylitol by recombinant microalgae.
    Pourmir A; Noor-Mohammadi S; Johannes TW
    J Biotechnol; 2013 Jun; 165(3-4):178-83. PubMed ID: 23597921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced free fatty acid production by codon-optimized Lactococcus lactis acyl-ACP thioesterase gene expression in Escherichia coli using crude glycerol.
    Lee S; Park S; Park C; Pack SP; Lee J
    Enzyme Microb Technol; 2014 Dec; 67():8-16. PubMed ID: 25442943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient free fatty acid production in Escherichia coli using plant acyl-ACP thioesterases.
    Zhang X; Li M; Agrawal A; San KY
    Metab Eng; 2011 Nov; 13(6):713-22. PubMed ID: 22001432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of a
    Zhao J; Ge Y; Liu K; Yamaoka Y; Zhang D; Chi Z; Akkaya M; Kong F
    J Agric Food Chem; 2023 Nov; 71(46):17833-17841. PubMed ID: 37934701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel acyl-ACP thioesterase gene ClFATB1 from Cinnamomum longepaniculatum.
    Lin N; Ai TB; Gao JH; Fan LH; Wang SH; Chen F
    Biochemistry (Mosc); 2013 Nov; 78(11):1298-303. PubMed ID: 24460945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydomonas as a model for biofuels and bio-products production.
    Scranton MA; Ostrand JT; Fields FJ; Mayfield SP
    Plant J; 2015 May; 82(3):523-531. PubMed ID: 25641390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of active site residues implies a two-step catalytic mechanism for acyl-ACP thioesterase.
    Jing F; Yandeau-Nelson MD; Nikolau BJ
    Biochem J; 2018 Dec; 475(23):3861-3873. PubMed ID: 30409825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching Protein Interfaces for Improved Medium-Chain Fatty Acid Production.
    Sarria S; Bartholow TG; Verga A; Burkart MD; Peralta-Yahya P
    ACS Synth Biol; 2018 May; 7(5):1179-1187. PubMed ID: 29722970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multigenic engineering of the chloroplast genome in the green alga
    Larrea-Alvarez M; Purton S
    Microbiology (Reading); 2020 Jun; 166(6):510-515. PubMed ID: 32250732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional analysis of three type-2 DGAT homologue genes for triacylglycerol production in the green microalga Chlamydomonas reinhardtii.
    La Russa M; Bogen C; Uhmeyer A; Doebbe A; Filippone E; Kruse O; Mussgnug JH
    J Biotechnol; 2012 Nov; 162(1):13-20. PubMed ID: 22542934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.