BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 23028443)

  • 41. Topographic organization in the retinocollicular pathway of the fetal cat demonstrated by retrograde labeling of ganglion cells.
    Chalupa LM; Snider CJ; Kirby MA
    J Comp Neurol; 1996 Apr; 368(2):295-303. PubMed ID: 8725308
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Prenatal development of retinocollicular projections in the rabbit: an HRP study.
    Crabtree JW
    J Comp Neurol; 1989 Aug; 286(4):504-13. PubMed ID: 2778104
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graded expression patterns of ephrin-As in the superior colliculus after lesion of the adult mouse optic nerve.
    Knöll B; Isenmann S; Kilic E; Walkenhorst J; Engel S; Wehinger J; Bähr M; Drescher U
    Mech Dev; 2001 Aug; 106(1-2):119-27. PubMed ID: 11472840
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Consequences of axon guidance defects on the development of retinotopic receptive fields in the mouse colliculus.
    Chandrasekaran AR; Furuta Y; Crair MC
    J Physiol; 2009 Mar; 587(Pt 5):953-63. PubMed ID: 19153163
    [TBL] [Abstract][Full Text] [Related]  

  • 45. RIM1/2 in retinal ganglion cells are required for the refinement of ipsilateral axons and eye-specific segregation.
    Assali A; Le Magueresse C; Bennis M; Nicol X; Gaspar P; Rebsam A
    Sci Rep; 2017 Jun; 7(1):3236. PubMed ID: 28607399
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topographic specificity in the retinocollicular projection of the developing ferret: an anterograde tracing study.
    Chalupa LM; Snider CJ
    J Comp Neurol; 1998 Mar; 392(1):35-47. PubMed ID: 9482231
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamic Alterations of Retinal EphA5 Expression in Retinocollicular Map Plasticity.
    Cheng Q; Graves MD; Pallas SL
    Dev Neurobiol; 2019 Mar; 79(3):252-267. PubMed ID: 30916472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development.
    McLaughlin T; Torborg CL; Feller MB; O'Leary DD
    Neuron; 2003 Dec; 40(6):1147-60. PubMed ID: 14687549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision.
    Leamey CA; Merlin S; Lattouf P; Sawatari A; Zhou X; Demel N; Glendining KA; Oohashi T; Sur M; Fässler R
    PLoS Biol; 2007 Sep; 5(9):e241. PubMed ID: 17803360
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Limited topographic specificity in the targeting and branching of mammalian retinal axons.
    Simon DK; O'Leary DD
    Dev Biol; 1990 Jan; 137(1):125-34. PubMed ID: 1688537
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A quantitative analysis of the ipsilateral retinocollicular projection in the cat: an EM degeneration and EM autoradiographic study.
    Behan M
    J Comp Neurol; 1982 Apr; 206(3):253-8. PubMed ID: 7085932
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The fine tuning of retinocollicular topography depends on reelin signaling during early postnatal development of the rat visual system.
    Antonioli-Santos R; Lanzillotta-Mattos B; Hedin-Pereira C; Serfaty CA
    Neuroscience; 2017 Aug; 357():264-272. PubMed ID: 28602919
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Specific routing of retinal ganglion cell axons at the mammalian optic chiasm during embryonic development.
    Sretavan DW
    J Neurosci; 1990 Jun; 10(6):1995-2007. PubMed ID: 2162389
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death.
    O'Leary DD; Fawcett JW; Cowan WM
    J Neurosci; 1986 Dec; 6(12):3692-705. PubMed ID: 3794796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Refinement of the ipsilateral retinocollicular projection is disrupted in double endothelial and neuronal nitric oxide synthase gene knockout mice.
    Wu HH; Cork RJ; Huang PL; Shuman DL; Mize RR
    Brain Res Dev Brain Res; 2000 Mar; 120(1):105-11. PubMed ID: 10727738
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of the visual pathway is disrupted in mice with a targeted disruption of the calcium channel beta(3)-subunit gene.
    Cork RJ; Namkung Y; Shin HS; Mize RR
    J Comp Neurol; 2001 Nov; 440(2):177-91. PubMed ID: 11745616
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii).
    Marotte LR
    J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Normal development of the ipsilateral retinocollicular pathway and its disruption in double endothelial and neuronal nitric oxide synthase gene knockout mice.
    Wu HH; Cork RJ; Mize RR
    J Comp Neurol; 2000 Oct; 426(4):651-65. PubMed ID: 11027405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Class-specific cell death shapes the distribution and pattern of central projection of cat retinal ganglion cells.
    Leventhal AG; Schall JD; Ault SJ; Provis JM; Vitek DJ
    J Neurosci; 1988 Jun; 8(6):2011-27. PubMed ID: 2838592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Retinotopic order in the optic nerve and superior colliculus during development of the retinocollicular projection in the wallaby (Macropus eugenii).
    Ding Y; Marotte LR
    Anat Embryol (Berl); 1997 Aug; 196(2):141-58. PubMed ID: 9278159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.