BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 23028459)

  • 1. Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.
    Guney E; Oliva B
    PLoS One; 2012; 7(9):e43557. PubMed ID: 23028459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease.
    Talwar P; Silla Y; Grover S; Gupta M; Agarwal R; Kushwaha S; Kukreti R
    BMC Genomics; 2014 Mar; 15(1):199. PubMed ID: 24628925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the robustness of network-based disease-gene prioritization methods reveals redundancy in the human interactome and functional diversity of disease-genes.
    Guney E; Oliva B
    PLoS One; 2014; 9(4):e94686. PubMed ID: 24733074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Benchmarking network-based gene prioritization methods for cerebral small vessel disease.
    Zhang H; Ferguson A; Robertson G; Jiang M; Zhang T; Sudlow C; Smith K; Rannikmae K; Wu H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A random set scoring model for prioritization of disease candidate genes using protein complexes and data-mining of GeneRIF, OMIM and PubMed records.
    Jiang L; Edwards SM; Thomsen B; Workman CT; Guldbrandtsen B; Sørensen P
    BMC Bioinformatics; 2014 Sep; 15(1):315. PubMed ID: 25253562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactogeneous: disease gene prioritization using heterogeneous networks and full topology scores.
    Gonçalves JP; Francisco AP; Moreau Y; Madeira SC
    PLoS One; 2012; 7(11):e49634. PubMed ID: 23185389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Network-Based Identification and Prioritization of Key Regulators of Coronary Artery Disease Loci.
    Zhao Y; Chen J; Freudenberg JM; Meng Q; Rajpal DK; Yang X
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):928-41. PubMed ID: 26966275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A computational framework for the prioritization of disease-gene candidates.
    Browne F; Wang H; Zheng H
    BMC Genomics; 2015; 16 Suppl 9(Suppl 9):S2. PubMed ID: 26330267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards integrative gene prioritization in Alzheimer's disease.
    Lee JH; Gonzalez GH
    Pac Symp Biocomput; 2011; ():4-13. PubMed ID: 21121028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disease gene prioritization by integrating tissue-specific molecular networks using a robust multi-network model.
    Ni J; Koyuturk M; Tong H; Haines J; Xu R; Zhang X
    BMC Bioinformatics; 2016 Nov; 17(1):453. PubMed ID: 27829360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GUILDify: a web server for phenotypic characterization of genes through biological data integration and network-based prioritization algorithms.
    Guney E; Garcia-Garcia J; Oliva B
    Bioinformatics; 2014 Jun; 30(12):1789-90. PubMed ID: 24532728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent approaches to the prioritization of candidate disease genes.
    Doncheva NT; Kacprowski T; Albrecht M
    Wiley Interdiscip Rev Syst Biol Med; 2012; 4(5):429-42. PubMed ID: 22689539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ProDiGe: Prioritization Of Disease Genes with multitask machine learning from positive and unlabeled examples.
    Mordelet F; Vert JP
    BMC Bioinformatics; 2011 Oct; 12():389. PubMed ID: 21977986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NIDM: network impulsive dynamics on multiplex biological network for disease-gene prediction.
    Xiang J; Zhang J; Zheng R; Li X; Li M
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network-Based Approaches for Disease-Gene Association Prediction Using Protein-Protein Interaction Networks.
    Kim Y; Park JH; Cho YR
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data.
    Luo J; Liang S
    J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A methodology based on molecular interactions and pathways to find candidate genes associated to diseases: its application to schizophrenia and Alzheimer's disease.
    Ochagavía ME; Miranda J; Nazábal M; Martin A; Novoa LI; Bringas R; Fernández-DE-Cossío J; Camacho H
    J Bioinform Comput Biol; 2011 Aug; 9(4):541-57. PubMed ID: 21776608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.