These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23028461)

  • 1. Using activity-related behavioural features towards more effective automatic stress detection.
    Giakoumis D; Drosou A; Cipresso P; Tzovaras D; Hassapis G; Gaggioli A; Riva G
    PLoS One; 2012; 7(9):e43571. PubMed ID: 23028461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time monitoring of behavioural parameters related to psychological stress.
    Giakoumis D; Drosou A; Cipresso P; Tzovaras D; Hassapis G; Gaggioli A; Riva G
    Stud Health Technol Inform; 2012; 181():287-91. PubMed ID: 22954873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable System for Real-Time Detection of Stress Level.
    Minguillon J; Perez E; Lopez-Gordo MA; Pelayo F; Sanchez-Carrion MJ
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. User stress detection in human-computer interactions.
    Zhai J; Barreto AB; Chin C; Li C
    Biomed Sci Instrum; 2005; 41():277-82. PubMed ID: 15850118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cluster-based analysis for personalized stress evaluation using physiological signals.
    Xu Q; Nwe TL; Guan C
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):275-81. PubMed ID: 25561450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards an anxiety and stress recognition system for academic environments based on physiological features.
    Rodríguez-Arce J; Lara-Flores L; Portillo-Rodríguez O; Martínez-Méndez R
    Comput Methods Programs Biomed; 2020 Jul; 190():105408. PubMed ID: 32139112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Objective stress monitoring based on wearable sensors in everyday settings.
    Han HJ; Labbaf S; Borelli JL; Dutt N; Rahmani AM
    J Med Eng Technol; 2020 May; 44(4):177-189. PubMed ID: 32589065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient methods for acute stress detection using heart rate variability data from Ambient Assisted Living sensors.
    Szakonyi B; Vassányi I; Schumacher E; Kósa I
    Biomed Eng Online; 2021 Jul; 20(1):73. PubMed ID: 34325719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Psychometrics Using Psychophysiological Measures for the Assessment of Acute Mental Stress.
    Cipresso P; Colombo D; Riva G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Shrewd Artificial Neural Network-Based Hybrid Model for Pervasive Stress Detection of Students Using Galvanic Skin Response and Electrocardiogram Signals.
    Tiwari S; Agarwal S
    Big Data; 2021 Dec; 9(6):427-442. PubMed ID: 34851743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodermal Activity Based Pre-surgery Stress Detection Using a Wrist Wearable.
    S AA; P S; V S; S SK; A S; Akl TJ; P PS; Sivaprakasam M
    IEEE J Biomed Health Inform; 2020 Jan; 24(1):92-100. PubMed ID: 30668508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biosignal analysis to assess mental stress in automatic driving of trucks: palmar perspiration and masseter electromyography.
    Zheng R; Yamabe S; Nakano K; Suda Y
    Sensors (Basel); 2015 Mar; 15(3):5136-50. PubMed ID: 25738768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Perceived Human Stress using Physiological Signals.
    Arsalan A; Majid M; Anwar SM; Bagci U
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1247-1250. PubMed ID: 31946118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective detection of chronic stress using physiological parameters.
    Al Abdi RM; Alhitary AE; Abdul Hay EW; Al-Bashir AK
    Med Biol Eng Comput; 2018 Dec; 56(12):2273-2286. PubMed ID: 29911251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the stress response: role of anxiety, cortisol and DHEAs].
    Boudarene M; Legros JJ; Timsit-Berthier M
    Encephale; 2002; 28(2):139-46. PubMed ID: 11972140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrodermal complexity during the Stroop colour word test.
    Svetlak M; Bob P; Cernik M; Kukleta M
    Auton Neurosci; 2010 Jan; 152(1-2):101-7. PubMed ID: 19914149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A system for automatic detection of momentary stress in naturalistic settings.
    Gaggioli A; Pioggia G; Tartarisco G; Baldus G; Ferro M; Cipresso P; Serino S; Popleteev A; Gabrielli S; Maimone R; Riva G
    Stud Health Technol Inform; 2012; 181():182-6. PubMed ID: 22954852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an automated stress/duress detection system.
    Tuttle WC; Davis JG; Greene ER
    Biomed Sci Instrum; 1979 Apr 23-25; 15():37-44. PubMed ID: 454791
    [No Abstract]   [Full Text] [Related]  

  • 20. Automatic Stress Detection in Working Environments From Smartphones' Accelerometer Data: A First Step.
    Garcia-Ceja E; Osmani V; Mayora O
    IEEE J Biomed Health Inform; 2016 Jul; 20(4):1053-60. PubMed ID: 26087509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.