These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 23028468)
1. Local polynomial estimation of heteroscedasticity in a multivariate linear regression model and its applications in economics. Su L; Zhao Y; Yan T; Li F PLoS One; 2012; 7(9):e43719. PubMed ID: 23028468 [TBL] [Abstract][Full Text] [Related]
2. Polynomial regression with heteroscedastic measurement errors in both axes: Estimation and hypothesis testing. Cheng CL; Tsai JR; Schneeweiss H Stat Methods Med Res; 2019 Sep; 28(9):2681-2696. PubMed ID: 29987977 [TBL] [Abstract][Full Text] [Related]
3. A comparison of methods to handle skew distributed cost variables in the analysis of the resource consumption in schizophrenia treatment. Kilian R; Matschinger H; Löeffler W; Roick C; Angermeyer MC J Ment Health Policy Econ; 2002 Mar; 5(1):21-31. PubMed ID: 12529567 [TBL] [Abstract][Full Text] [Related]
4. Slope estimation in structural line-segment heteroscedastic measurement error models. McAssey MP; Hsieh F Stat Med; 2010 Nov; 29(25):2631-42. PubMed ID: 20799248 [TBL] [Abstract][Full Text] [Related]
5. Computationally Stable Estimation Procedure for the Multivariate Linear Mixed-Effect Model and Application to Malaria Public Health Problem. Adjakossa EH; Hounkonnou NM; Nuel G Int J Biostat; 2019 Jun; 15(2):. PubMed ID: 31226099 [TBL] [Abstract][Full Text] [Related]
6. A non-parametric statistic for testing conditional heteroscedasticity for unobserved component models. Rodriguez A; Pino G; Herrera R J Appl Stat; 2021; 48(3):471-497. PubMed ID: 35706534 [TBL] [Abstract][Full Text] [Related]
7. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression. Ding AA; Wu H Stat Sin; 2014 Oct; 24(4):1613-1631. PubMed ID: 26401093 [TBL] [Abstract][Full Text] [Related]
8. Estimation and inference for multikink expectile regression with longitudinal data. Li D; Wang L; Zhao W Stat Med; 2022 Mar; 41(7):1296-1313. PubMed ID: 34883531 [TBL] [Abstract][Full Text] [Related]
9. LOCAL BUCKLEY-JAMES ESTIMATION FOR HETEROSCEDASTIC ACCELERATED FAILURE TIME MODEL. Pang L; Lu W; Wang HJ Stat Sin; 2015; 25():863-877. PubMed ID: 27547018 [TBL] [Abstract][Full Text] [Related]
10. Local CQR Smoothing: An Efficient and Safe Alternative to Local Polynomial Regression. Kai B; Li R; Zou H J R Stat Soc Series B Stat Methodol; 2010 Jan; 72(1):49-69. PubMed ID: 20975930 [TBL] [Abstract][Full Text] [Related]
11. Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. Terza JV; Basu A; Rathouz PJ J Health Econ; 2008 May; 27(3):531-43. PubMed ID: 18192044 [TBL] [Abstract][Full Text] [Related]
13. Non-linear heteroscedastic regression model for determination of methotrexate in human plasma by high-performance liquid chromatography. Sadray S; Rezaee S; Rezakhah S J Chromatogr B Analyt Technol Biomed Life Sci; 2003 Apr; 787(2):293-302. PubMed ID: 12650752 [TBL] [Abstract][Full Text] [Related]
14. Value at risk estimation using independent component analysis-generalized autoregressive conditional heteroscedasticity (ICA-GARCH) models. Wu EH; Yu PL; Li WK Int J Neural Syst; 2006 Oct; 16(5):371-82. PubMed ID: 17117498 [TBL] [Abstract][Full Text] [Related]
15. Assessing the adequacy of variance function in heteroscedastic regression models. Wang L; Zhou XH Biometrics; 2007 Dec; 63(4):1218-25. PubMed ID: 17484775 [TBL] [Abstract][Full Text] [Related]
16. A comparison of two-stage procedures for testing least-squares coefficients under heteroscedasticity. Ng M; Wilcox RR Br J Math Stat Psychol; 2011 May; 64(Pt 2):244-58. PubMed ID: 21492131 [TBL] [Abstract][Full Text] [Related]
17. Maximum Marginal Likelihood Estimation of a Monotonic Polynomial Generalized Partial Credit Model with Applications to Multiple Group Analysis. Falk CF; Cai L Psychometrika; 2016 Jun; 81(2):434-60. PubMed ID: 25487423 [TBL] [Abstract][Full Text] [Related]
18. Semiparametric regression for measurement error model with heteroscedastic error. Li M; Ma Y; Li R J Multivar Anal; 2019 May; 171():320-338. PubMed ID: 30799885 [TBL] [Abstract][Full Text] [Related]
19. Heteroscedastic one-factor models and marginal maximum likelihood estimation. Hessen DJ; Dolan CV Br J Math Stat Psychol; 2009 Feb; 62(Pt 1):57-77. PubMed ID: 17935662 [TBL] [Abstract][Full Text] [Related]
20. A comparison of the variance estimation methods for heteroscedastic nonlinear models. Sidik K; Jonkman JN Stat Med; 2016 Nov; 35(26):4856-4874. PubMed ID: 27383279 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]