BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 23028781)

  • 1. Sirt5 deacylation activities show differential sensitivities to nicotinamide inhibition.
    Fischer F; Gertz M; Suenkel B; Lakshminarasimhan M; Schutkowski M; Steegborn C
    PLoS One; 2012; 7(9):e45098. PubMed ID: 23028781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Substrate Specificity-Defining Residues of Human SIRT5 in Modulating the Structural Stability and Inhibitory Features of the Enzyme.
    Yu J; Haldar M; Mallik S; Srivastava DK
    PLoS One; 2016; 11(3):e0152467. PubMed ID: 27023330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).
    Zhou Y; Zhang H; He B; Du J; Lin H; Cerione RA; Hao Q
    J Biol Chem; 2012 Aug; 287(34):28307-14. PubMed ID: 22767592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical probing of the human sirtuin 5 active site reveals its substrate acyl specificity and peptide-based inhibitors.
    Roessler C; Nowak T; Pannek M; Gertz M; Nguyen GT; Scharfe M; Born I; Sippl W; Steegborn C; Schutkowski M
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10728-32. PubMed ID: 25111069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia.
    Gertz M; Steegborn C
    Biochim Biophys Acta; 2010 Aug; 1804(8):1658-65. PubMed ID: 19766741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase.
    Du J; Zhou Y; Su X; Yu JJ; Khan S; Jiang H; Kim J; Woo J; Kim JH; Choi BH; He B; Chen W; Zhang S; Cerione RA; Auwerx J; Hao Q; Lin H
    Science; 2011 Nov; 334(6057):806-9. PubMed ID: 22076378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin.
    Schuetz A; Min J; Antoshenko T; Wang CL; Allali-Hassani A; Dong A; Loppnau P; Vedadi M; Bochkarev A; Sternglanz R; Plotnikov AN
    Structure; 2007 Mar; 15(3):377-89. PubMed ID: 17355872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of carba-NAD and the structures of its ternary complexes with SIRT3 and SIRT5.
    Szczepankiewicz BG; Dai H; Koppetsch KJ; Qian D; Jiang F; Mao C; Perni RB
    J Org Chem; 2012 Sep; 77(17):7319-29. PubMed ID: 22849721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of sirtuin inhibition by nicotinamide: altering the NAD(+) cosubstrate specificity of a Sir2 enzyme.
    Avalos JL; Bever KM; Wolberger C
    Mol Cell; 2005 Mar; 17(6):855-68. PubMed ID: 15780941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the human deacylase Sirtuin 5 by the indole GW5074.
    Suenkel B; Fischer F; Steegborn C
    Bioorg Med Chem Lett; 2013 Jan; 23(1):143-6. PubMed ID: 23195732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD(+)-dependent Sir2 histone/protein deacetylases.
    Zhao K; Harshaw R; Chai X; Marmorstein R
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8563-8. PubMed ID: 15150415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism.
    Gertz M; Fischer F; Nguyen GT; Lakshminarasimhan M; Schutkowski M; Weyand M; Steegborn C
    Proc Natl Acad Sci U S A; 2013 Jul; 110(30):E2772-81. PubMed ID: 23840057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry.
    Sauve AA; Schramm VL
    Biochemistry; 2003 Aug; 42(31):9249-56. PubMed ID: 12899610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human sirtuins are differentially sensitive to inhibition by nitrosating agents and other cysteine oxidants.
    Kalous KS; Wynia-Smith SL; Summers SB; Smith BC
    J Biol Chem; 2020 Jun; 295(25):8524-8536. PubMed ID: 32371394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting sirtuin-catalyzed deacylation reactions using ³²P-labeled NAD and thin-layer chromatography.
    Zhu A; Su X; Lin H
    Methods Mol Biol; 2013; 1077():179-89. PubMed ID: 24014407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors.
    Yang L; Ma X; He Y; Yuan C; Chen Q; Li G; Chen X
    Sci China Life Sci; 2017 Mar; 60(3):249-256. PubMed ID: 27858336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.