These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 23028914)

  • 41. Perception and coding of interaural time differences with bilateral cochlear implants.
    Laback B; Egger K; Majdak P
    Hear Res; 2015 Apr; 322():138-50. PubMed ID: 25456088
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Speech perception with music maskers by cochlear implant users and normal-hearing listeners.
    Eskridge EN; Galvin JJ; Aronoff JM; Li T; Fu QJ
    J Speech Lang Hear Res; 2012 Jun; 55(3):800-10. PubMed ID: 22223890
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spatial Release From Informational and Energetic Masking in Bimodal and Bilateral Cochlear Implant Users.
    D'Onofrio K; Richards V; Gifford R
    J Speech Lang Hear Res; 2020 Nov; 63(11):3816-3833. PubMed ID: 33049147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Redundant Information Is Sometimes More Beneficial Than Spatial Information to Understand Speech in Noise.
    Dieudonné B; Francart T
    Ear Hear; 2019; 40(3):545-554. PubMed ID: 30299342
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Release from informational masking in a monaural competing-speech task with vocoded copies of the maskers presented contralaterally.
    Bernstein JG; Iyer N; Brungart DS
    J Acoust Soc Am; 2015 Feb; 137(2):702-13. PubMed ID: 25698005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners With Bilateral and With Hearing-Preservation Cochlear Implants.
    Loiselle LH; Dorman MF; Yost WA; Cook SJ; Gifford RH
    J Speech Lang Hear Res; 2016 Aug; 59(4):810-8. PubMed ID: 27411035
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of Additional Low-Pass-Filtered Speech on Listening Effort for Noise-Band-Vocoded Speech in Quiet and in Noise.
    Pals C; Sarampalis A; van Dijk M; Başkent D
    Ear Hear; 2019; 40(1):3-17. PubMed ID: 29757801
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of spatial configuration and fundamental frequency on speech intelligibility in multiple-talker conditions in the ipsilateral horizontal plane and median planea).
    Yao D; Zhao J; Wang L; Shang Z; Gu J; Wang Y; Jia M; Li J
    J Acoust Soc Am; 2024 May; 155(5):2934-2947. PubMed ID: 38717201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Factors underlying masking release by voice-gender differences and spatial separation cues in multi-talker listening environments in listeners with and without hearing loss.
    Oh Y; Hartling CL; Srinivasan NK; Diedesch AC; Gallun FJ; Reiss LAJ
    Front Neurosci; 2022; 16():1059639. PubMed ID: 36507363
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Binaural enhancement for bilateral cochlear implant users.
    Brown CA
    Ear Hear; 2014; 35(5):580-4. PubMed ID: 25144252
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voice gender and the segregation of competing talkers: Perceptual learning in cochlear implant simulations.
    Sullivan JR; Assmann PF; Hossain S; Schafer EC
    J Acoust Soc Am; 2017 Mar; 141(3):1643. PubMed ID: 28372046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binaural masking level differences in actual and simulated bilateral cochlear implant listeners.
    Lu T; Litovsky R; Zeng FG
    J Acoust Soc Am; 2010 Mar; 127(3):1479-90. PubMed ID: 20329848
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning in the spatial dimension: evidence from a masked speech identification task.
    Marrone N; Mason CR; Kidd G
    J Acoust Soc Am; 2008 Aug; 124(2):1146-58. PubMed ID: 18681603
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of binaural hearing in speech intelligibility and spatial release from masking using vocoded speech.
    Garadat SN; Litovsky RY; Yu G; Zeng FG
    J Acoust Soc Am; 2009 Nov; 126(5):2522-35. PubMed ID: 19894832
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Forward masking patterns by low and high-rate stimulation in cochlear implant users: Differences in masking effectiveness and spread of neural excitation.
    Zhou N; Dong L; Dixon S
    Hear Res; 2020 Apr; 389():107921. PubMed ID: 32097828
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Availability of binaural cues for bilateral implant recipients and bimodal listeners with and without preserved hearing in the implanted ear.
    Gifford RH; Dorman MF; Sheffield SW; Teece K; Olund AP
    Audiol Neurootol; 2014; 19(1):57-71. PubMed ID: 24356514
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial hearing benefits demonstrated with presentation of acoustic temporal fine structure cues in bilateral cochlear implant listeners.
    Churchill TH; Kan A; Goupell MJ; Litovsky RY
    J Acoust Soc Am; 2014 Sep; 136(3):1246. PubMed ID: 25190398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatial release from masking as a function of the spectral overlap of competing talkers.
    Best V; Thompson ER; Mason CR; Kidd G
    J Acoust Soc Am; 2013 Jun; 133(6):3677-80. PubMed ID: 23742322
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Benefits of triple acoustic beamforming during speech-on-speech masking and sound localization for bilateral cochlear-implant users.
    Yun D; Jennings TR; Kidd G; Goupell MJ
    J Acoust Soc Am; 2021 May; 149(5):3052. PubMed ID: 34241104
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pupillometry Reveals That Context Benefit in Speech Perception Can Be Disrupted by Later-Occurring Sounds, Especially in Listeners With Cochlear Implants.
    Winn MB; Moore AN
    Trends Hear; 2018; 22():2331216518808962. PubMed ID: 30375282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.