These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 2302894)

  • 1. Growth hormone in polymethylmethacrylate cement.
    Downes S; Wood DJ; Malcolm AJ; Ali SY
    Clin Orthop Relat Res; 1990 Mar; (252):294-8. PubMed ID: 2302894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sodium fluoride sustained-release bone cement: an experimental study in vitro and in vivo.
    Magnan B; Gabbi C; Regis D
    Acta Orthop Belg; 1994; 60(1):72-9; discussion 80. PubMed ID: 8171990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The release of cytotoxic drugs from acrylic bone cement.
    Wasserlauf S; Warshawsky A; Arad-Yelin R; Mazur Y; Salama R; Dekel S
    Bull Hosp Jt Dis; 1993; 53(1):68-74. PubMed ID: 8374496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Growth factor-loaded scaffolds for bone engineering.
    Jansen JA; Vehof JW; Ruhé PQ; Kroeze-Deutman H; Kuboki Y; Takita H; Hedberg EL; Mikos AG
    J Control Release; 2005 Jan; 101(1-3):127-36. PubMed ID: 15588899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The biological fixation strength of the bone particle impregnated bone cement].
    Dong F
    Zhonghua Wai Ke Za Zhi; 1992 Oct; 30(10):590-2, 635. PubMed ID: 1306790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of the bioactive bone cement--bone interface: quantitative and histological evaluation.
    Nishimura N; Taguchi Y; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1993; 4(1):29-38. PubMed ID: 10148343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Penetration and shear strength of cement-bone interfaces in vivo.
    MacDonald W; Swarts E; Beaver R
    Clin Orthop Relat Res; 1993 Jan; (286):283-8. PubMed ID: 8425359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained pressurization of polymethylmethacrylate: a comparison of low- and moderate-viscosity bone cements.
    Bean DJ; Hollis JM; Woo SL; Convery FR
    J Orthop Res; 1988; 6(4):580-4. PubMed ID: 3379511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of methotrexate-loaded bone cement on local destruction by the VX2 tumour.
    Wang HM; Crank S; Oliver G; Galasko CS
    J Bone Joint Surg Br; 1996 Jan; 78(1):14-7. PubMed ID: 8898119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new model of bone infection used to evaluate the efficacy of antibiotic-impregnated polymethylmethacrylate cement.
    Rodeheaver GT; Rukstalis D; Bono M; Bellamy W
    Clin Orthop Relat Res; 1983 Sep; (178):303-11. PubMed ID: 6883865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of bead size and polymerization in PMMA bone cement on vancomycin release.
    Shinsako K; Okui Y; Matsuda Y; Kunimasa J; Otsuka M
    Biomed Mater Eng; 2008; 18(6):377-85. PubMed ID: 19197114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of an in vivo environment on the strength of bone cement.
    Rostoker W; Lereim P; Galante JO
    J Biomed Mater Res; 1979 May; 13(3):365-70. PubMed ID: 438225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal/cement interface strength in cemented stem fixation.
    Ahmed AM; Raab S; Miller JE
    J Orthop Res; 1984; 2(2):105-18. PubMed ID: 6491806
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cement pressure and bone strength on polymethylmethacrylate fixation.
    Askew MJ; Steege JW; Lewis JL; Ranieri JR; Wixson RL
    J Orthop Res; 1984; 1(4):412-20. PubMed ID: 6491790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gentamicin release from polymethylmethacrylate bone cements and Staphylococcus aureus biofilm formation.
    van de Belt H; Neut D; Schenk W; van Horn JR; van der Mei HC; Busscher HJ
    Acta Orthop Scand; 2000 Dec; 71(6):625-9. PubMed ID: 11145392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gentamicin release from two-solution and powder-liquid poly(methyl methacrylate)-based bone cements by using novel pH method.
    Merkhan IK; Hasenwinkel JM; Gilbert JL
    J Biomed Mater Res A; 2004 Jun; 69(3):577-83. PubMed ID: 15127405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo.
    Wong CT; Chen QZ; Lu WW; Leong JC; Chan WK; Cheung KM; Luk KD
    J Biomed Mater Res A; 2004 Sep; 70(3):428-35. PubMed ID: 15293316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into the release of bioactive recombinant human growth hormone from normal and low-viscosity poly(methylmethacrylate) bone cements.
    Goodwin CJ; Braden M; Downes S; Marshall NJ
    J Biomed Mater Res; 1997 Jan; 34(1):47-55. PubMed ID: 8978652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new bioactive bone cement consisting of BIS-GMA resin and bioactive glass powder.
    Kawanabe K; Tamura J; Yamamuro T; Nakamura T; Kokubo T; Yoshihara S
    J Appl Biomater; 1993; 4(2):135-41. PubMed ID: 10148600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.