These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 23028970)

  • 1. Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides.
    Gudlur S; Sukthankar P; Gao J; Avila LA; Hiromasa Y; Chen J; Iwamoto T; Tomich JM
    PLoS One; 2012; 7(9):e45374. PubMed ID: 23028970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules.
    Barros SM; Whitaker SK; Sukthankar P; Avila LA; Gudlur S; Warner M; Beltrão EI; Tomich JM
    Arch Biochem Biophys; 2016 Apr; 596():22-42. PubMed ID: 26926258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles.
    van Hell AJ; Klymchenko A; Burgers PP; Moret EE; Jiskoot W; Hennink WE; Crommelin DJ; Mastrobattista E
    J Phys Chem B; 2010 Sep; 114(34):11046-52. PubMed ID: 20687533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatically tuned self-assembly of branched amphiphilic peptides.
    Ting CL; Frischknecht AL; Stevens MJ; Spoerke ED
    J Phys Chem B; 2014 Jul; 118(29):8624-30. PubMed ID: 24945080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from vesicles to nanofibres in the enzymatic self-assemblies of an amphiphilic peptide as an antitumour drug carrier.
    Gong Z; Liu X; Dong J; Zhang W; Jiang Y; Zhang J; Feng W; Chen K; Bai J
    Nanoscale; 2019 Sep; 11(33):15479-15486. PubMed ID: 31237302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-like self-assembling peptide nanovesicles for drug delivery.
    Fatouros DG; Lamprou DA; Urquhart AJ; Yannopoulos SN; Vizirianakis IS; Zhang S; Koutsopoulos S
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8184-9. PubMed ID: 24821330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding.
    Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR
    Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides.
    Guo C; Luo Y; Zhou R; Wei G
    Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic Copolymer-Chaperoned 2D-3D Reversible Conversion of Lipid Membranes.
    Shimada N; Kinoshita H; Umegae T; Azumai S; Kume N; Ochiai T; Takenaka T; Sakamoto W; Yamada T; Furuta T; Masuda T; Sakurai M; Higuchi H; Maruyama A
    Adv Mater; 2019 Nov; 31(44):e1904032. PubMed ID: 31550402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides.
    Li J; Li X; Xu J; Wang Y; Wu L; Wang Y; Wang L; Lee M; Li W
    Chemistry; 2016 Oct; 22(44):15751-15759. PubMed ID: 27621229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular Assembly of Peptide Amphiphiles.
    Hendricks MP; Sato K; Palmer LC; Stupp SI
    Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides.
    Huang Z; Che S
    Chem Rec; 2015 Aug; 15(4):665-74. PubMed ID: 26083010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity.
    Kornmueller K; Lehofer B; Meindl C; Fröhlich E; Leitinger G; Amenitsch H; Prassl R
    Biomacromolecules; 2016 Nov; 17(11):3591-3601. PubMed ID: 27741400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Branched amphiphilic peptide capsules: cellular uptake and retention of encapsulated solutes.
    Sukthankar P; Avila LA; Whitaker SK; Iwamoto T; Morgenstern A; Apostolidis C; Liu K; Hanzlik RP; Dadachova E; Tomich JM
    Biochim Biophys Acta; 2014 Sep; 1838(9):2296-305. PubMed ID: 24565797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the self-assembly mechanism of diphenylalanine-based peptide nanovesicles and nanotubes.
    Guo C; Luo Y; Zhou R; Wei G
    ACS Nano; 2012 May; 6(5):3907-18. PubMed ID: 22468743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular assembly of asymmetric self-neutralizing amphiphilic peptide wedges.
    Van Gough D; Wheeler JS; Cheng S; Stevens MJ; Spoerke ED
    Langmuir; 2014 Aug; 30(30):9201-9. PubMed ID: 25003982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.