These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 23028970)
1. Peptide nanovesicles formed by the self-assembly of branched amphiphilic peptides. Gudlur S; Sukthankar P; Gao J; Avila LA; Hiromasa Y; Chen J; Iwamoto T; Tomich JM PLoS One; 2012; 7(9):e45374. PubMed ID: 23028970 [TBL] [Abstract][Full Text] [Related]
2. A review of solute encapsulating nanoparticles used as delivery systems with emphasis on branched amphipathic peptide capsules. Barros SM; Whitaker SK; Sukthankar P; Avila LA; Gudlur S; Warner M; Beltrão EI; Tomich JM Arch Biochem Biophys; 2016 Apr; 596():22-42. PubMed ID: 26926258 [TBL] [Abstract][Full Text] [Related]
3. Conformation and intermolecular interactions of SA2 peptides self-assembled into vesicles. van Hell AJ; Klymchenko A; Burgers PP; Moret EE; Jiskoot W; Hennink WE; Crommelin DJ; Mastrobattista E J Phys Chem B; 2010 Sep; 114(34):11046-52. PubMed ID: 20687533 [TBL] [Abstract][Full Text] [Related]
4. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators. Rajagopal K; Ozbas B; Pochan DJ; Schneider JP Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291 [TBL] [Abstract][Full Text] [Related]
6. Transition from vesicles to nanofibres in the enzymatic self-assemblies of an amphiphilic peptide as an antitumour drug carrier. Gong Z; Liu X; Dong J; Zhang W; Jiang Y; Zhang J; Feng W; Chen K; Bai J Nanoscale; 2019 Sep; 11(33):15479-15486. PubMed ID: 31237302 [TBL] [Abstract][Full Text] [Related]
7. Lipid-like self-assembling peptide nanovesicles for drug delivery. Fatouros DG; Lamprou DA; Urquhart AJ; Yannopoulos SN; Vizirianakis IS; Zhang S; Koutsopoulos S ACS Appl Mater Interfaces; 2014 Jun; 6(11):8184-9. PubMed ID: 24821330 [TBL] [Abstract][Full Text] [Related]
8. Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Han S; Cao S; Wang Y; Wang J; Xia D; Xu H; Zhao X; Lu JR Chemistry; 2011 Nov; 17(46):13095-102. PubMed ID: 21956759 [TBL] [Abstract][Full Text] [Related]
9. DNA nanostructures interacting with lipid bilayer membranes. Langecker M; Arnaut V; List J; Simmel FC Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105 [TBL] [Abstract][Full Text] [Related]
10. Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides. Guo C; Luo Y; Zhou R; Wei G Nanoscale; 2014 Mar; 6(5):2800-11. PubMed ID: 24468750 [TBL] [Abstract][Full Text] [Related]
12. Engineering the Ionic Self-Assembly of Polyoxometalates and Facial-Like Peptides. Li J; Li X; Xu J; Wang Y; Wu L; Wang Y; Wang L; Lee M; Li W Chemistry; 2016 Oct; 22(44):15751-15759. PubMed ID: 27621229 [TBL] [Abstract][Full Text] [Related]
13. Supramolecular Assembly of Peptide Amphiphiles. Hendricks MP; Sato K; Palmer LC; Stupp SI Acc Chem Res; 2017 Oct; 50(10):2440-2448. PubMed ID: 28876055 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of Chiral Materials via Self-Assembly and Biomineralization of Peptides. Huang Z; Che S Chem Rec; 2015 Aug; 15(4):665-74. PubMed ID: 26083010 [TBL] [Abstract][Full Text] [Related]
15. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity. Kornmueller K; Lehofer B; Meindl C; Fröhlich E; Leitinger G; Amenitsch H; Prassl R Biomacromolecules; 2016 Nov; 17(11):3591-3601. PubMed ID: 27741400 [TBL] [Abstract][Full Text] [Related]
16. Self-assembly of cyclo-diphenylalanine peptides in vacuum. Jeon J; Shell MS J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752 [TBL] [Abstract][Full Text] [Related]