BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 23029561)

  • 1. Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains.
    Crombach A; Cicin-Sain D; Wotton KR; Jaeger J
    PLoS One; 2012; 7(9):e46658. PubMed ID: 23029561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic image analysis for gene expression patterns of fly embryos.
    Peng H; Long F; Zhou J; Leung G; Eisen MB; Myers EW
    BMC Cell Biol; 2007 Jul; 8 Suppl 1(Suppl 1):S7. PubMed ID: 17634097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New methods for computational decomposition of whole-mount in situ images enable effective curation of a large, highly redundant collection of Xenopus images.
    Patrushev I; James-Zorn C; Ciau-Uitz A; Patient R; Gilchrist MJ
    PLoS Comput Biol; 2018 Aug; 14(8):e1006077. PubMed ID: 30157169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPEX2: automated concise extraction of spatial gene expression patterns from Fly embryo ISH images.
    Puniyani K; Faloutsos C; Xing EP
    Bioinformatics; 2010 Jun; 26(12):i47-56. PubMed ID: 20529936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GINI: from ISH images to gene interaction networks.
    Puniyani K; Xing EP
    PLoS Comput Biol; 2013; 9(10):e1003227. PubMed ID: 24130465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of gene expression in embryonic structures of Drosophila melanogaster.
    Samsonova AA; Niranjan M; Russell S; Brazma A
    PLoS Comput Biol; 2007 Jul; 3(7):e144. PubMed ID: 17658945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A methodology to infer gene networks from spatial patterns of expression--an application to fluorescence in situ hybridization images.
    Campiteli MG; Comin CH; Costa Lda F; Babu MM; Cesar RM
    Mol Biosyst; 2013 Jul; 9(7):1926-30. PubMed ID: 23591446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of gene expression patterns using high-throughput RNA in situ hybridization to whole-mount Drosophila embryos.
    Weiszmann R; Hammonds AS; Celniker SE
    Nat Protoc; 2009; 4(5):605-18. PubMed ID: 19360017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-Mount In Situ Hybridization of
    Saint-Jeannet JP
    Cold Spring Harb Protoc; 2017 Dec; 2017(12):pdb.prot097287. PubMed ID: 29084864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput whole mount in situ hybridization of zebrafish embryos for analysis of tissue-specific gene expression changes after environmental perturbation.
    Coverdale LE; Burton LE; Martin CC
    Methods Mol Biol; 2008; 410():3-14. PubMed ID: 18642591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization of Gene Expression Patterns by In Situ Hybridization on Early Stages of Development of Xenopus laevis.
    El-Hodiri HM; Kelly LE
    Methods Mol Biol; 2018; 1797():325-335. PubMed ID: 29896701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient reverse-engineering of a developmental gene regulatory network.
    Crombach A; Wotton KR; Cicin-Sain D; Ashyraliyev M; Jaeger J
    PLoS Comput Biol; 2012; 8(7):e1002589. PubMed ID: 22807664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae).
    Crombach A; García-Solache MA; Jaeger J
    Biosystems; 2014 Sep; 123():74-85. PubMed ID: 24911671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification of Drosophila embryonic developmental stage range based on gene expression pattern images.
    Ye J; Chen J; Li Q; Kumar S
    Comput Syst Bioinformatics Conf; 2006; ():293-8. PubMed ID: 17369647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-target Chromogenic Whole-mount In Situ Hybridization for Comparing Gene Expression Domains in Drosophila Embryos.
    Hauptmann G; Söll I; Krautz R; Theopold U
    J Vis Exp; 2016 Jan; (107):e53830. PubMed ID: 26862978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequencing mRNA from cryo-sliced Drosophila embryos to determine genome-wide spatial patterns of gene expression.
    Combs PA; Eisen MB
    PLoS One; 2013; 8(8):e71820. PubMed ID: 23951250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Methods for acquisition of quantitative from confocal images of gene expression in situ].
    Surkova SIu; Miasnikova EM; Kozlov KN; Samsonova AA; Reinitz J; Samsonova MG
    Tsitologiia; 2008; 50(4):352-69. PubMed ID: 18664119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systematic determination of patterns of gene expression during Drosophila embryogenesis.
    Tomancak P; Beaton A; Weiszmann R; Kwan E; Shu S; Lewis SE; Richards S; Ashburner M; Hartenstein V; Celniker SE; Rubin GM
    Genome Biol; 2002; 3(12):RESEARCH0088. PubMed ID: 12537577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatically identifying and annotating mouse embryo gene expression patterns.
    Han L; van Hemert JI; Baldock RA
    Bioinformatics; 2011 Apr; 27(8):1101-7. PubMed ID: 21357576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high-throughput method for quantifying gene expression data from early Drosophila embryos.
    Janssens H; Kosman D; Vanario-Alonso CE; Jaeger J; Samsonova M; Reinitz J
    Dev Genes Evol; 2005 Jul; 215(7):374-81. PubMed ID: 15834586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.