These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 23030097)

  • 1. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator.
    McBride RD; Slutz SA; Jennings CA; Sinars DB; Cuneo ME; Herrmann MC; Lemke RW; Martin MR; Vesey RA; Peterson KJ; Sefkow AB; Nakhleh C; Blue BE; Killebrew K; Schroen D; Rogers TJ; Laspe A; Lopez MR; Smith IC; Atherton BW; Savage M; Stygar WA; Porter JL
    Phys Rev Lett; 2012 Sep; 109(13):135004. PubMed ID: 23030097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field.
    Awe TJ; McBride RD; Jennings CA; Lamppa DC; Martin MR; Rovang DC; Slutz SA; Cuneo ME; Owen AC; Sinars DB; Tomlinson K; Gomez MR; Hansen SB; Herrmann MC; McKenney JL; Nakhleh C; Robertson GK; Rochau GA; Savage ME; Schroen DG; Stygar WA
    Phys Rev Lett; 2013 Dec; 111(23):235005. PubMed ID: 24476283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrothermal instability mitigation by using thick dielectric coatings on magnetically imploded conductors.
    Peterson KJ; Awe TJ; Yu EP; Sinars DB; Field ES; Cuneo ME; Herrmann MC; Savage M; Schroen D; Tomlinson K; Nakhleh C
    Phys Rev Lett; 2014 Apr; 112(13):135002. PubMed ID: 24745432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of magneto-Rayleigh-Taylor instability growth during the implosion of initially solid Al tubes driven by the 20-MA, 100-ns Z facility.
    Sinars DB; Slutz SA; Herrmann MC; McBride RD; Cuneo ME; Peterson KJ; Vesey RA; Nakhleh C; Blue BE; Killebrew K; Schroen D; Tomlinson K; Edens AD; Lopez MR; Smith IC; Shores J; Bigman V; Bennett GR; Atherton BW; Savage M; Stygar WA; Leifeste GT; Porter JL
    Phys Rev Lett; 2010 Oct; 105(18):185001. PubMed ID: 21231110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents.
    Yager-Elorriaga DA; Steiner AM; Patel SG; Jordan NM; Lau YY; Gilgenbach RM
    Rev Sci Instrum; 2015 Nov; 86(11):113506. PubMed ID: 26628134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoenergetic-proton-radiography measurements of implosion dynamics in direct-drive inertial-confinement fusion.
    Li CK; Séguin FH; Rygg JR; Frenje JA; Manuel M; Petrasso RD; Betti R; Delettrez J; Knauer JP; Marshall F; Meyerhofer DD; Shvarts D; Smalyuk VA; Stoeckl C; Landen OL; Town RP; Back CA; Kilkenny JD
    Phys Rev Lett; 2008 Jun; 100(22):225001. PubMed ID: 18643423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners.
    Awe TJ; Peterson KJ; Yu EP; McBride RD; Sinars DB; Gomez MR; Jennings CA; Martin MR; Rosenthal SE; Schroen DG; Sefkow AB; Slutz SA; Tomlinson K; Vesey RA
    Phys Rev Lett; 2016 Feb; 116(6):065001. PubMed ID: 26918996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance.
    Haines BM; Grinstein FF; Fincke JR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053302. PubMed ID: 25353910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.
    Stygar WA; Cuneo ME; Vesey RA; Ives HC; Mazarakis MG; Chandler GA; Fehl DL; Leeper RJ; Matzen MK; McDaniel DH; McGurn JS; McKenney JL; Muron DJ; Olson CL; Porter JL; Ramirez JJ; Seamen JF; Speas CS; Spielman RB; Struve KW; Torres JA; Waisman EM; Wagoner TC; Gilliland TL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026404. PubMed ID: 16196715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure and energy balance of stagnating plasmas in z-pinch experiments: implications to current flow at stagnation.
    Maron Y; Starobinets A; Fisher VI; Kroupp E; Osin D; Fisher A; Deeney C; Coverdale CA; Lepell PD; Yu EP; Jennings C; Cuneo ME; Herrmann MC; Porter JL; Mehlhorn TA; Apruzese JP
    Phys Rev Lett; 2013 Jul; 111(3):035001. PubMed ID: 23909333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions.
    Cuneo ME; Vesey RA; Porter JL; Bennett GR; Hanson DL; Ruggles LE; Simpson WW; Idzorek GC; Stygar WA; Hammer JH; Seamen JJ; Torres JA; McGurn JS; Green RM
    Phys Rev Lett; 2002 May; 88(21):215004. PubMed ID: 12059481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impeding hohlraum plasma stagnation in inertial-confinement fusion.
    Li CK; Séguin FH; Frenje JA; Rosenberg MJ; Rinderknecht HG; Zylstra AB; Petrasso RD; Amendt PA; Landen OL; Mackinnon AJ; Town RP; Wilks SC; Betti R; Meyerhofer DD; Soures JM; Hund J; Kilkenny JD; Nikroo A
    Phys Rev Lett; 2012 Jan; 108(2):025001. PubMed ID: 22324691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ionization gradients on inertial-confinement-fusion capsule hydrodynamic stability.
    Amendt P
    Phys Rev Lett; 2008 Sep; 101(11):115004. PubMed ID: 18851291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new time and space resolved transmission spectrometer for research in inertial confinement fusion and radiation source development.
    Knapp PF; Ball C; Austin K; Hansen SB; Kernaghan MD; Lake PW; Ampleford DJ; McPherson LA; Sandoval D; Gard P; Wu M; Bourdon C; Rochau GA; McBride RD; Sinars DB
    Rev Sci Instrum; 2017 Jan; 88(1):013504. PubMed ID: 28147637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stagnation pressure of imploding shells and ignition energy scaling of inertial confinement fusion targets.
    Kemp A; Meyer-ter-Vehn J; Atzeni S
    Phys Rev Lett; 2001 Apr; 86(15):3336-9. PubMed ID: 11327964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.
    Hu SX; Fiksel G; Goncharov VN; Skupsky S; Meyerhofer DD; Smalyuk VA
    Phys Rev Lett; 2012 May; 108(19):195003. PubMed ID: 23003051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic Generation and Inverse Cascade in the z-Pinch Driven, Preseeded Multimode, Magneto-Rayleigh-Taylor Instability.
    Ruiz DE; Yager-Elorriaga DA; Peterson KJ; Sinars DB; Weis MR; Schroen DG; Tomlinson K; Fein JR; Beckwith K
    Phys Rev Lett; 2022 Jun; 128(25):255001. PubMed ID: 35802445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect-drive inertial confinement fusion using highly supersonic, radiatively cooled, plasma slugs.
    Chittenden JP; Dunne M; Zepf M; Lebedev SV; Ciardi A; Bland SN
    Phys Rev Lett; 2002 Jun; 88(23):235001. PubMed ID: 12059369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces.
    Clark DS; Tabak M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 2):056308. PubMed ID: 16383746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
    Park HS; Hurricane OA; Callahan DA; Casey DT; Dewald EL; Dittrich TR; Döppner T; Hinkel DE; Berzak Hopkins LF; Le Pape S; Ma T; Patel PK; Remington BA; Robey HF; Salmonson JD; Kline JL
    Phys Rev Lett; 2014 Feb; 112(5):055001. PubMed ID: 24580603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.