These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 23030162)

  • 1. Inference of time-evolving coupled dynamical systems in the presence of noise.
    Stankovski T; Duggento A; McClintock PV; Stefanovska A
    Phys Rev Lett; 2012 Jul; 109(2):024101. PubMed ID: 23030162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators.
    Duggento A; Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061126. PubMed ID: 23367912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical inference: where phase synchronization and generalized synchronization meet.
    Stankovski T; McClintock PV; Stefanovska A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062909. PubMed ID: 25019853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time Window Determination for Inference of Time-Varying Dynamics: Application to Cardiorespiratory Interaction.
    Lukarski D; Ginovska M; Spasevska H; Stankovski T
    Front Physiol; 2020; 11():341. PubMed ID: 32411009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling phase multistability in coupled period-doubling oscillators.
    Shabunin AV
    Chaos; 2013 Mar; 23(1):013102. PubMed ID: 23556939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generic behavior of master-stability functions in coupled nonlinear dynamical systems.
    Huang L; Chen Q; Lai YC; Pecora LM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036204. PubMed ID: 19905197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spurious detection of phase synchronization in coupled nonlinear oscillators.
    Xu L; Chen Z; Hu K; Stanley HE; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):065201. PubMed ID: 16906897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex dynamics and synchronization of delayed-feedback nonlinear oscillators.
    Murphy TE; Cohen AB; Ravoori B; Schmitt KR; Setty AV; Sorrentino F; Williams CR; Ott E; Roy R
    Philos Trans A Math Phys Eng Sci; 2010 Jan; 368(1911):343-66. PubMed ID: 20008405
    [TBL] [Abstract][Full Text] [Related]  

  • 9. External periodic driving of large systems of globally coupled phase oscillators.
    Antonsen TM; Faghih RT; Girvan M; Ott E; Platig J
    Chaos; 2008 Sep; 18(3):037112. PubMed ID: 19045486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase locking induces scale-free topologies in networks of coupled oscillators.
    Sendiña-Nadal I; Buldú JM; Leyva I; Boccaletti S
    PLoS One; 2008 Jul; 3(7):e2644. PubMed ID: 18612423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-dimensional lattice of oscillators coupled through power-law interactions: continuum limit and dynamics of spatial Fourier modes.
    Gupta S; Potters M; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066201. PubMed ID: 23005190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-noise RF-amplifier-free slab-coupled optical waveguide coupled optoelectronic oscillators: physics and operation.
    Loh W; Yegnanarayanan S; Plant JJ; O'Donnell FJ; Grein ME; Klamkin J; Duff SM; Juodawlkis PW
    Opt Express; 2012 Aug; 20(17):19420-30. PubMed ID: 23038585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the structure of small dynamical networks from the state time evolution of one node.
    Autariello R; Dzakpasu R; Sorrentino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012915. PubMed ID: 23410412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the phase of synchronized oscillators.
    Revzen S; Guckenheimer JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051907. PubMed ID: 19113155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partial time-delay coupling enlarges death island of coupled oscillators.
    Zou W; Zhan M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):065204. PubMed ID: 20365221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronization of weakly perturbed Markov chain oscillators.
    Tönjes R; Kori H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056206. PubMed ID: 22181483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators.
    Teramae JN; Tanaka D
    Phys Rev Lett; 2004 Nov; 93(20):204103. PubMed ID: 15600929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of individual phase relationship between coupled oscillators using multilinear feedback.
    Kano T; Kinoshita S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026206. PubMed ID: 20365637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delays and weakly coupled neuronal oscillators.
    Ermentrout B; Ko TW
    Philos Trans A Math Phys Eng Sci; 2009 Mar; 367(1891):1097-115. PubMed ID: 19218153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting anomalous phase synchronization from time series.
    Tokuda IT; Kumar Dana S; Kurths J
    Chaos; 2008 Jun; 18(2):023134. PubMed ID: 18601500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.