These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 23030178)

  • 1. Strong coupling between mechanical modes in a nanotube resonator.
    Eichler A; del Álamo Ruiz M; Plaza JA; Bachtold A
    Phys Rev Lett; 2012 Jul; 109(2):025503. PubMed ID: 23030178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strong coupling between single-electron tunneling and nanomechanical motion.
    Steele GA; Hüttel AK; Witkamp B; Poot M; Meerwaldt HB; Kouwenhoven LP; van der Zant HS
    Science; 2009 Aug; 325(5944):1103-7. PubMed ID: 19628816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parametric strong mode-coupling in carbon nanotube mechanical resonators.
    Li SX; Zhu D; Wang XH; Wang JT; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nanoscale; 2016 Aug; 8(31):14809-13. PubMed ID: 27447924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamical strong coupling and parametric amplification of mechanical modes of graphene drums.
    Mathew JP; Patel RN; Borah A; Vijay R; Deshmukh MM
    Nat Nanotechnol; 2016 Sep; 11(9):747-51. PubMed ID: 27294506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly Coupled Nanotube Electromechanical Resonators.
    Deng GW; Zhu D; Wang XH; Zou CL; Wang JT; Li HO; Cao G; Liu D; Li Y; Xiao M; Guo GC; Jiang KL; Dai XC; Guo GP
    Nano Lett; 2016 Sep; 16(9):5456-62. PubMed ID: 27487412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optomechanical dark mode.
    Dong C; Fiore V; Kuzyk MC; Wang H
    Science; 2012 Dec; 338(6114):1609-13. PubMed ID: 23160956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity.
    Luo G; Zhang ZZ; Deng GW; Li HO; Cao G; Xiao M; Guo GC; Tian L; Guo GP
    Nat Commun; 2018 Jan; 9(1):383. PubMed ID: 29374169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Giant Tunable Mechanical Nonlinearity in Graphene-Silicon Nitride Hybrid Resonator.
    Singh R; Sarkar A; Guria C; Nicholl RJT; Chakraborty S; Bolotin KI; Ghosh S
    Nano Lett; 2020 Jun; 20(6):4659-4666. PubMed ID: 32437616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling mechanics to charge transport in carbon nanotube mechanical resonators.
    Lassagne B; Tarakanov Y; Kinaret J; Garcia-Sanchez D; Bachtold A
    Science; 2009 Aug; 325(5944):1107-10. PubMed ID: 19628818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled modes, frequencies and fields of a dielectric resonator and a cavity using coupled mode theory.
    Elnaggar SY; Tervo R; Mattar SM
    J Magn Reson; 2014 Jan; 238():1-7. PubMed ID: 24246950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mode coupling bi-stability and spectral broadening in buckled carbon nanotube mechanical resonators.
    Rechnitz S; Tabachnik T; Shlafman M; Shlafman S; Yaish YE
    Nat Commun; 2022 Oct; 13(1):5900. PubMed ID: 36202803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator.
    Pályi A; Struck PR; Rudner M; Flensberg K; Burkard G
    Phys Rev Lett; 2012 May; 108(20):206811. PubMed ID: 23003173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear Mode Coupling and One-to-One Internal Resonances in a Monolayer WS
    Nathamgari SSP; Dong S; Medina L; Moldovan N; Rosenmann D; Divan R; Lopez D; Lauhon LJ; Espinosa HD
    Nano Lett; 2019 Jun; 19(6):4052-4059. PubMed ID: 31117759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong electromechanical coupling of an atomic force microscope cantilever to a quantum dot.
    Bennett SD; Cockins L; Miyahara Y; Grütter P; Clerk AA
    Phys Rev Lett; 2010 Jan; 104(1):017203. PubMed ID: 20366389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chaotic synchronization of two optical cavity modes in optomechanical systems.
    Yang N; Miranowicz A; Liu YC; Xia K; Nori F
    Sci Rep; 2019 Nov; 9(1):15874. PubMed ID: 31676811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface acoustic wave opto-mechanical oscillator and frequency comb generator.
    Savchenkov AA; Matsko AB; Ilchenko VS; Seidel D; Maleki L
    Opt Lett; 2011 Sep; 36(17):3338-40. PubMed ID: 21886203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators.
    de Bonis SL; Urgell C; Yang W; Samanta C; Noury A; Vergara-Cruz J; Dong Q; Jin Y; Bachtold A
    Nano Lett; 2018 Aug; 18(8):5324-5328. PubMed ID: 30062893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical instability of a Bose-Einstein condensate in an optical ring resonator.
    Schmidt D; Tomczyk H; Slama S; Zimmermann C
    Phys Rev Lett; 2014 Mar; 112(11):115302. PubMed ID: 24702385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Strong Coupling of Mechanical Resonance between Spatially Separated FePS
    Šiškins M; Sokolovskaya E; Lee M; Mañas-Valero S; Davidovikj D; van der Zant HSJ; Steeneken PG
    Nano Lett; 2022 Jan; 22(1):36-42. PubMed ID: 34919402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity.
    Ares N; Pei T; Mavalankar A; Mergenthaler M; Warner JH; Briggs GA; Laird EA
    Phys Rev Lett; 2016 Oct; 117(17):170801. PubMed ID: 27824476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.