BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 23030358)

  • 1. Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2012 Nov; 46(21):12129-36. PubMed ID: 23030358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro characterization of cadmium and zinc uptake via the gastro-intestinal tract of the rainbow trout (Oncorhynchus mykiss): Interactive effects and the influence of calcium.
    Ojo AA; Wood CM
    Aquat Toxicol; 2008 Aug; 89(1):55-64. PubMed ID: 18619683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting cadmium accumulation and toxicity in a green alga in the presence of varying essential element concentrations using a biotic ligand model.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2014 Jan; 48(2):1222-9. PubMed ID: 24341312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cadmium exposure and phosphorus limitation increases metal content in the freshwater alga Chlamydomonas reinhardtii.
    Webster RE; Dean AP; Pittman JK
    Environ Sci Technol; 2011 Sep; 45(17):7489-96. PubMed ID: 21809879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna.
    Yu RQ; Wang WX
    Environ Pollut; 2004 Jun; 129(3):443-56. PubMed ID: 15016465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: the protective effect of trace zinc and cobalt concentrations.
    Lavoie M; Fortin C; Campbell PG
    Environ Toxicol Chem; 2012 Jul; 31(7):1445-52. PubMed ID: 22544654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium transport in isolated enterocytes of freshwater rainbow trout: interactions with zinc and iron, effects of complexation with cysteine, and an ATPase-coupled efflux.
    Kwong RW; Niyogi S
    Comp Biochem Physiol C Toxicol Pharmacol; 2012 Mar; 155(2):238-46. PubMed ID: 21930242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.
    Poteat MD; Díaz-Jaramillo M; Buchwalter DB
    J Exp Biol; 2012 May; 215(Pt 9):1575-83. PubMed ID: 22496295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioconcentration and depuration of copper, cadmium, and zinc mixtures by the freshwater amphipod Hyalella azteca.
    Shuhaimi-Othman M; Pascoe D
    Ecotoxicol Environ Saf; 2007 Jan; 66(1):29-35. PubMed ID: 16647753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative studies on the uptake and effects of cadmium and zinc on the cellular energy allocation of two freshwater gastropods.
    Moolman L; Van Vuren JH; Wepener V
    Ecotoxicol Environ Saf; 2007 Nov; 68(3):443-50. PubMed ID: 17303241
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake.
    Franklin NM; Stauber JL; Lim RP; Petocz P
    Environ Toxicol Chem; 2002 Nov; 21(11):2412-22. PubMed ID: 12389921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of zinc transport by divalent metal transporters of the ZIP family from the model legume Medicago truncatula.
    Stephens BW; Cook DR; Grusak MA
    Biometals; 2011 Feb; 24(1):51-8. PubMed ID: 20862522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium and zinc uptake and toxicity in two strains of Microcystis aeruginosa predicted by metal free ion activity and intracellular concentration.
    Zeng J; Yang L; Wang WX
    Aquat Toxicol; 2009 Feb; 91(3):212-20. PubMed ID: 19100632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acclimation to and recovery from cadmium and zinc exposure by a freshwater cyanobacterium, Microcystis aeruginosa.
    Zeng J; Yang L; Wang WX
    Aquat Toxicol; 2009 Jun; 93(1):1-10. PubMed ID: 19328562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biokinetics of cadmium and zinc in a marine bacterium: influences of metal interaction and pre-exposure.
    Chen D; Qian PY; Wang WX
    Environ Toxicol Chem; 2008 Aug; 27(8):1794-801. PubMed ID: 18384227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of metal-ligand complexes on the cadmium and zinc biokinetics in the marine bacterium, Bacillus firmus.
    Keung CF; Guo F; Qian P; Wang WX
    Environ Toxicol Chem; 2008 Jan; 27(1):131-7. PubMed ID: 18092855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium uptake in aquatic insects: influences of phylogeny and metals (Cd and Zn).
    Poteat MD; Buchwalter DB
    J Exp Biol; 2014 Apr; 217(Pt 7):1180-6. PubMed ID: 24311815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influences of salinity on the biokinetics of Cd, Se, and Zn in the intertidal mudskipper Periophthalmus cantonensis.
    Ni IH; Chan SM; Wang WX
    Chemosphere; 2005 Dec; 61(11):1607-17. PubMed ID: 15979689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.
    Abboud P; Wilkinson KJ
    Environ Pollut; 2013 Aug; 179():33-8. PubMed ID: 23644273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.