These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 23030473)

  • 1. Microfluidic device for automated synchronization of bacterial cells.
    Madren SM; Hoffman MD; Brown PJ; Kysela DT; Brun YV; Jacobson SC
    Anal Chem; 2012 Oct; 84(20):8571-8. PubMed ID: 23030473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Synchronizer Using a Synthetic Nanoparticle-Capped Bacterium.
    Chang Z; Shen Y; Lang Q; Zheng H; Tokuyasu TA; Huang S; Liu C
    ACS Synth Biol; 2019 May; 8(5):962-967. PubMed ID: 30964646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable, Pneumatically Actuated Microfluidic Device with an Integrated Nanochannel Array To Track Development of Individual Bacteria.
    Baker JD; Kysela DT; Zhou J; Madren SM; Wilkens AS; Brun YV; Jacobson SC
    Anal Chem; 2016 Sep; 88(17):8476-83. PubMed ID: 27314919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus.
    Entcheva-Dimitrov P; Spormann AM
    J Bacteriol; 2004 Dec; 186(24):8254-66. PubMed ID: 15576774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing.
    Glieberman AL; Pope BD; Zimmerman JF; Liu Q; Ferrier JP; Kenty JHR; Schrell AM; Mukhitov N; Shores KL; Tepole AB; Melton DA; Roper MG; Parker KK
    Lab Chip; 2019 Sep; 19(18):2993-3010. PubMed ID: 31464325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic chip with movable layers for the manipulation of biochemicals.
    Seder I; Kim DM; Hwang SH; Sung H; Kim DE; Kim SJ
    Lab Chip; 2018 Jun; 18(13):1867-1874. PubMed ID: 29877550
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of surface adhesion in Caulobacter crescentus.
    Bodenmiller D; Toh E; Brun YV
    J Bacteriol; 2004 Mar; 186(5):1438-47. PubMed ID: 14973013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional profiling of Caulobacter crescentus during growth on complex and minimal media.
    Hottes AK; Meewan M; Yang D; Arana N; Romero P; McAdams HH; Stephens C
    J Bacteriol; 2004 Mar; 186(5):1448-61. PubMed ID: 14973021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated Microfluidic Instrument for Label-Free and High-Throughput Cell Separation.
    Zhang X; Zhu Z; Xiang N; Long F; Ni Z
    Anal Chem; 2018 Mar; 90(6):4212-4220. PubMed ID: 29493225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Static Microfluidic Device for Investigating the Chemotaxis Response to Stable, Non-linear Gradients.
    Sule N; Penarete-Acosta D; Englert DL; Jayaraman A
    Methods Mol Biol; 2018; 1729():47-59. PubMed ID: 29429081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Culture Conditions on Cell Proliferation in a Microfluidic Channel.
    Sato K; Sato M; Yokoyama M; Hirai M; Furuta A
    Anal Sci; 2019 Jan; 35(1):49-56. PubMed ID: 30473567
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell Cycle Synchronization Using a Microfluidic Synchronizer for Fission Yeast Cells.
    Wang S; Luo C
    Methods Mol Biol; 2016; 1342():259-68. PubMed ID: 26254929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth medium-dependent glycine incorporation into the peptidoglycan of Caulobacter crescentus.
    Takacs CN; Hocking J; Cabeen MT; Bui NK; Poggio S; Vollmer W; Jacobs-Wagner C
    PLoS One; 2013; 8(2):e57579. PubMed ID: 23469030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Immunoaffinity Basophil Activation Test for Point-of-Care Allergy Diagnosis.
    Aljadi Z; Kalm F; Ramachandraiah H; Nopp A; Lundahl J; Russom A
    J Appl Lab Med; 2019 Sep; 4(2):152-163. PubMed ID: 31639660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and Evaluation of Microfluidic Immunoassay Devices with Antibody-Immobilized Microbeads Retained in Porous Hydrogel Micropillars.
    Kasama T; Kaji N; Tokeshi M; Baba Y
    Methods Mol Biol; 2017; 1547():49-56. PubMed ID: 28044286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated nanopore/microchannel devices for ac electrokinetic trapping of particles.
    Kovarik ML; Jacobson SC
    Anal Chem; 2008 Feb; 80(3):657-64. PubMed ID: 18179245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip cell sorting by high-speed local-flow control using dual membrane pumps.
    Sakuma S; Kasai Y; Hayakawa T; Arai F
    Lab Chip; 2017 Aug; 17(16):2760-2767. PubMed ID: 28685786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.
    Chen Y; Chan HN; Michael SA; Shen Y; Chen Y; Tian Q; Huang L; Wu H
    Lab Chip; 2017 Feb; 17(4):653-662. PubMed ID: 28112765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protocol for biofilm streamer formation in a microfluidic device with micro-pillars.
    Hassanpourfard M; Sun X; Valiei A; Mukherjee P; Thundat T; Liu Y; Kumar A
    J Vis Exp; 2014 Aug; (90):. PubMed ID: 25178035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.