BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 23030507)

  • 1. Construction and assessment of reaction models between F₁F₀-synthase and organotin compounds: molecular docking and quantum calculations.
    Rocha MV; Ramalho TC; Caetano MS; da Cunha EF
    J Biomol Struct Dyn; 2013 Oct; 31(10):1175-81. PubMed ID: 23030507
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the molecular behavior of organotin compounds to design their effective use as agrochemicals: exploration via quantum chemistry and experiments.
    Ramalho TC; Rocha MV; da Cunha EF; Oliveira LC; Carvalho KT
    J Biomol Struct Dyn; 2010 Oct; 28(2):227-38. PubMed ID: 20645655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ion channel of F-ATP synthase is the target of toxic organotin compounds.
    von Ballmoos C; Brunner J; Dimroth P
    Proc Natl Acad Sci U S A; 2004 Aug; 101(31):11239-44. PubMed ID: 15277681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum polarized ligand docking investigation to understand the significance of protonation states in histone deacetylase inhibitors.
    Kalyaanamoorthy S; Chen YP
    J Mol Graph Model; 2013 Jul; 44():44-53. PubMed ID: 23732305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology modeling and docking studies of FabH (β-ketoacyl-ACP synthase III) enzyme involved in type II fatty acid biosynthesis of Chlorella variabilis: a potential algal feedstock for biofuel production.
    Misra N; Patra MC; Panda PK; Sukla LB; Mishra BK
    J Biomol Struct Dyn; 2013 Mar; 31(3):241-57. PubMed ID: 22830394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Drugs Targeting the c-Ring of the F1FO-ATP Synthase.
    Pagliarani A; Nesci S; Ventrella V
    Mini Rev Med Chem; 2016; 16(10):815-24. PubMed ID: 26864551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rate of hydrolysis in ATP synthase is fine-tuned by α-subunit motif controlling active site conformation.
    Beke-Somfai T; Lincoln P; Nordén B
    Proc Natl Acad Sci U S A; 2013 Feb; 110(6):2117-22. PubMed ID: 23345443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the conformational flexibility and electrostatic properties of curcumin in the active site of rhAChE via molecular docking, molecular dynamics, and charge density analysis.
    Saravanan K; Kalaiarasi C; Kumaradhas P
    J Biomol Struct Dyn; 2017 Dec; 35(16):3627-3647. PubMed ID: 27897077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and assessment of reaction models of class I EPSP synthase: molecular docking and density functional theoretical calculations.
    Ramalho TC; Caetano MS; da Cunha EF; Souza TC; Rocha MV
    J Biomol Struct Dyn; 2009 Oct; 27(2):195-207. PubMed ID: 19583445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the nucleotide-binding subunit B of the energy producer A1A0 ATP synthase in complex with adenosine diphosphate.
    Kumar A; Manimekalai MS; Grüber G
    Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1110-5. PubMed ID: 19020348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition mechanism exploration of quinoline derivatives as PDE10A inhibitors by in silico analysis.
    Wu Q; Gao Q; Guo H; Li D; Wang J; Gao W; Han C; Li Y; Yang L
    Mol Biosyst; 2013 Mar; 9(3):386-97. PubMed ID: 23354020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of organotin compounds on rat neuronal nitric oxide synthase through interaction with calmodulin.
    Ohashi K; Kominami S; Yamazaki T; Ohta S; Kitamura S
    Biochem Biophys Res Commun; 2004 Nov; 324(1):178-85. PubMed ID: 15464999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge density distribution and the electrostatic moments of CTPB in the active site of p300 enzyme: a DFT and charge density study.
    Devipriya B; Kumaradhas P
    J Theor Biol; 2013 Oct; 335():119-29. PubMed ID: 23770402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Structure, biogenesis and mechanism of function of the mitochondrial ATP synthase complex].
    Wysocka-Kapcińska M; Kucharczyk R
    Postepy Biochem; 2012; 58(3):344-52. PubMed ID: 23373419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetic signalling in the control of mitochondrial F1F0 ATP synthase activity in health and disease.
    Grover GJ; Marone PA; Koetzner L; Seto-Young D
    Int J Biochem Cell Biol; 2008; 40(12):2698-701. PubMed ID: 18707016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering the 'Elixir of Life': Dynamic Perspectives into the Allosteric Modulation of Mitochondrial ATP Synthase by J147, a Novel Drug in the Treatment of Alzheimer's Disease.
    Emmanuel IA; Olotu FA; Agoni C; Soliman MES
    Chem Biodivers; 2019 Jun; 16(6):e1900085. PubMed ID: 30990952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical control of ATP synthase function: activation energy difference between tight and loose binding sites.
    Beke-Somfai T; Lincoln P; Nordén B
    Biochemistry; 2010 Jan; 49(3):401-3. PubMed ID: 20000803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in silico exploration of the interaction mechanism of pyrazolo[1,5-a]pyrimidine type CDK2 inhibitors.
    Li Y; Gao W; Li F; Wang J; Zhang J; Yang Y; Zhang S; Yang L
    Mol Biosyst; 2013 Sep; 9(9):2266-81. PubMed ID: 23864105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a new binding site in E. coli FabH using Molecular dynamics simulations: validation by computational alanine mutagenesis and docking studies.
    Ramamoorthy D; Turos E; Guida WC
    J Chem Inf Model; 2013 May; 53(5):1138-56. PubMed ID: 23581389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional roles of a structural element involving Na+-pi interactions in the catalytic site of T1 lipase revealed by molecular dynamics simulations.
    Hagiwara Y; Matsumura H; Tateno M
    J Am Chem Soc; 2009 Nov; 131(46):16697-705. PubMed ID: 19886661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.