BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23030686)

  • 1. Three-dimensional poly(ε-caprolactone) bioactive scaffolds with controlled structural and surface properties.
    Gloria A; Causa F; Russo T; Battista E; Della Moglie R; Zeppetelli S; De Santis R; Netti PA; Ambrosio L
    Biomacromolecules; 2012 Nov; 13(11):3510-21. PubMed ID: 23030686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of novel nano- and micro-HA/PCL composite scaffolds using a modified rapid prototyping process.
    Heo SJ; Kim SE; Wei J; Hyun YT; Yun HS; Kim DH; Shin JW; Shin JW
    J Biomed Mater Res A; 2009 Apr; 89(1):108-16. PubMed ID: 18431758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spiral-structured, nanofibrous, 3D scaffolds for bone tissue engineering.
    Wang J; Valmikinathan CM; Liu W; Laurencin CT; Yu X
    J Biomed Mater Res A; 2010 May; 93(2):753-62. PubMed ID: 19642211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.
    Hoque ME; San WY; Wei F; Li S; Huang MH; Vert M; Hutmacher DW
    Tissue Eng Part A; 2009 Oct; 15(10):3013-24. PubMed ID: 19331580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering.
    Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F
    Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair.
    Neves SC; Moreira Teixeira LS; Moroni L; Reis RL; Van Blitterswijk CA; Alves NM; Karperien M; Mano JF
    Biomaterials; 2011 Feb; 32(4):1068-79. PubMed ID: 20980050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro.
    Lu HH; El-Amin SF; Scott KD; Laurencin CT
    J Biomed Mater Res A; 2003 Mar; 64(3):465-74. PubMed ID: 12579560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.
    Tzoneva R; Weckwerth C; Seifert B; Behl M; Heuchel M; Tsoneva I; Lendlein A
    J Biomater Sci Polym Ed; 2011; 22(16):2205-26. PubMed ID: 21073803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of thermal treatments to enhance the mechanical properties of electrospun poly(epsilon-caprolactone) scaffolds.
    Lee SJ; Oh SH; Liu J; Soker S; Atala A; Yoo JJ
    Biomaterials; 2008 Apr; 29(10):1422-30. PubMed ID: 18096219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface investigation on biomimetic materials to control cell adhesion: the case of RGD conjugation on PCL.
    Causa F; Battista E; Della Moglie R; Guarnieri D; Iannone M; Netti PA
    Langmuir; 2010 Jun; 26(12):9875-84. PubMed ID: 20349926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of poly(epsilon-caprolactone)/polyfumarate blends as scaffolds for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo AM; McCarthy AD; Cortizo MS
    J Biomater Sci Polym Ed; 2010; 21(10):1297-312. PubMed ID: 20534186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA; Lee SH; Kim WD
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds.
    Roohani-Esfahani SI; Lu ZF; Li JJ; Ellis-Behnke R; Kaplan DL; Zreiqat H
    Acta Biomater; 2012 Jan; 8(1):302-12. PubMed ID: 22023750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response.
    Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK
    Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micro-scale surface-structured PCL scaffold fabricated by a 3D plotter and a chemical blowing agent.
    Yoon H; Kim GH; Koh YH
    J Biomater Sci Polym Ed; 2010; 21(2):159-70. PubMed ID: 20092682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis.
    Sung HJ; Meredith C; Johnson C; Galis ZS
    Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Challenges in the characterization of plasma-processed three-dimensional polymeric scaffolds for biomedical applications.
    Fisher ER
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9312-21. PubMed ID: 24028344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.