These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 23030829)

  • 1. Molecularly imprinted Ru complex catalysts integrated on oxide surfaces.
    Muratsugu S; Tada M
    Acc Chem Res; 2013 Feb; 46(2):300-11. PubMed ID: 23030829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and catalytic performances of a molecularly imprinted Ru-complex catalyst with an NH2 binding site on a SiO2 surface.
    Yang Y; Weng Z; Muratsugu S; Ishiguro N; Ohkoshi S; Tada M
    Chemistry; 2012 Jan; 18(4):1142-53. PubMed ID: 22179859
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of surface molecularly imprinted Ru-complex catalysts for asymmetric transfer hydrogenation in water media.
    Weng Z; Muratsugu S; Ishiguro N; Ohkoshi S; Tada M
    Dalton Trans; 2011 Mar; 40(10):2338-47. PubMed ID: 21165517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design strategies for the molecular level synthesis of supported catalysts.
    Wegener SL; Marks TJ; Stair PC
    Acc Chem Res; 2012 Feb; 45(2):206-14. PubMed ID: 22004451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and catalytic performance of a molecularly imprinted Pd complex catalyst for Suzuki cross-coupling reactions.
    Muratsugu S; Maity N; Baba H; Tasaki M; Tada M
    Dalton Trans; 2017 Mar; 46(10):3125-3134. PubMed ID: 28155958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers.
    Liu JQ; Wulff G
    J Am Chem Soc; 2008 Jun; 130(25):8044-54. PubMed ID: 18510322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chiral self-dimerization of vanadium complexes on a SiO2 surface for asymmetric catalytic coupling of 2-naphthol: structure, performance, and mechanism.
    Tada M; Kojima N; Izumi Y; Taniike T; Iwasawa Y
    J Phys Chem B; 2005 May; 109(20):9905-16. PubMed ID: 16852198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.
    Madhavan N; Jones CW; Weck M
    Acc Chem Res; 2008 Sep; 41(9):1153-65. PubMed ID: 18793027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking enzymatic active sites on surfaces for energy conversion chemistry.
    Gutzler R; Stepanow S; Grumelli D; Lingenfelder M; Kern K
    Acc Chem Res; 2015 Jul; 48(7):2132-9. PubMed ID: 26121410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported Ru-monomer complex catalyst.
    Tada M; Muratsugu S; Kinoshita M; Sasaki T; Iwasawa Y
    J Am Chem Soc; 2010 Jan; 132(2):713-24. PubMed ID: 20000837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New ru(II) complexes containing oxazoline ligands as epoxidation catalysts. Influence of the substituents on the catalytic performance.
    Serrano I; López MI; Ferrer Í; Poater A; Parella T; Fontrodona X; Solà M; Llobet A; Rodríguez M; Romero I
    Inorg Chem; 2011 Jul; 50(13):6044-54. PubMed ID: 21650155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monolayer binary active phase (Mo-V) and (Cr-V) supported on titania catalysts for the selective catalytic reduction (SCR) of NO by NH3.
    Bourikas K; Fountzoula C; Kordulis C
    Langmuir; 2004 Nov; 20(24):10663-9. PubMed ID: 15544399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing enzyme-like catalysts: a rhodium(II) metallopeptide case study.
    Ball ZT
    Acc Chem Res; 2013 Feb; 46(2):560-70. PubMed ID: 23210518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-state NMR concepts for the investigation of supported transition metal catalysts and nanoparticles.
    Gutmann T; Grünberg A; Rothermel N; Werner M; Srour M; Abdulhussain S; Tan S; Xu Y; Breitzke H; Buntkowsky G
    Solid State Nucl Magn Reson; 2013; 55-56():1-11. PubMed ID: 23972428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface and bulk aspects of mixed oxide catalytic nanoparticles: oxidation and dehydration of CH(3)OH by polyoxometallates.
    Nakka L; Molinari JE; Wachs IE
    J Am Chem Soc; 2009 Oct; 131(42):15544-54. PubMed ID: 19807071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric Oxide Reduction by Carbon Monoxide over Supported Hexaruthenium Cluster Catalysts. 1. The Active Site Structure That Depends on Supporting Metal Oxide and Catalytic Reaction Conditions.
    Minato T; Izumi Y; Aika K; Ishiguro A; Nakajima T; Wakatsuki Y
    J Phys Chem B; 2003 Aug; 107(34):9022-8. PubMed ID: 26313135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.