These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 23030853)
1. Universality classes of transport in time-dependent random potentials. Krivolapov Y; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030103. PubMed ID: 23030853 [TBL] [Abstract][Full Text] [Related]
2. Transport in time-dependent random potentials. Krivolapov Y; Fishman S Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051115. PubMed ID: 23214746 [TBL] [Abstract][Full Text] [Related]
3. Relaxation of the distribution function tails for systems described by Fokker-Planck equations. Chavanis PH; Lemou M Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061106. PubMed ID: 16485930 [TBL] [Abstract][Full Text] [Related]
4. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
5. Anisotropic diffusion across an external magnetic field and large-scale fluctuations in magnetized plasmas. Holod I; Zagorodny A; Weiland J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046401. PubMed ID: 15903788 [TBL] [Abstract][Full Text] [Related]
6. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group. Fisher DS; Le Doussal P; Monthus C Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236 [TBL] [Abstract][Full Text] [Related]
7. Diffusion in a bistable system: The eigenvalue spectrum of the Fokker-Planck operator and Kramers' reaction rate theory. Zhan Y; Shizgal BD Phys Rev E; 2019 Apr; 99(4-1):042101. PubMed ID: 31108642 [TBL] [Abstract][Full Text] [Related]
8. A consistent approach for the treatment of Fermi acceleration in time-dependent billiards. Karlis AK; Diakonos FK; Constantoudis V Chaos; 2012 Jun; 22(2):026120. PubMed ID: 22757579 [TBL] [Abstract][Full Text] [Related]
9. Universality in quantum chaos and the one-parameter scaling theory. García-García AM; Wang J Phys Rev Lett; 2008 Feb; 100(7):070603. PubMed ID: 18352537 [TBL] [Abstract][Full Text] [Related]
10. Recent developments in the kinetic theory of nucleation. Ruckenstein E; Djikaev YS Adv Colloid Interface Sci; 2005 Dec; 118(1-3):51-72. PubMed ID: 16137628 [TBL] [Abstract][Full Text] [Related]
11. Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities. Aringazin AK Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 2):036301. PubMed ID: 15524627 [TBL] [Abstract][Full Text] [Related]
12. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Shiino M Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056118. PubMed ID: 12786231 [TBL] [Abstract][Full Text] [Related]
13. Fractional Fokker-Planck dynamics: Numerical algorithm and simulations. Heinsalu E; Patriarca M; Goychuk I; Schmid G; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046133. PubMed ID: 16711904 [TBL] [Abstract][Full Text] [Related]
14. Microscopic theory of anomalous diffusion based on particle interactions. Lutsko JF; Boon JP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776 [TBL] [Abstract][Full Text] [Related]
15. Renormalization group theory of anomalous transport in systems with Hamiltonian chaos. Zaslavsky GM Chaos; 1994 Mar; 4(1):25-33. PubMed ID: 12780083 [TBL] [Abstract][Full Text] [Related]
16. Current and universal scaling in anomalous transport. Goychuk I; Heinsalu E; Patriarca M; Schmid G; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):020101. PubMed ID: 16605310 [TBL] [Abstract][Full Text] [Related]
17. Collisional relaxation of two-dimensional self-gravitating systems. Marcos B Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032112. PubMed ID: 24125219 [TBL] [Abstract][Full Text] [Related]
18. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach. Trigger SA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497 [TBL] [Abstract][Full Text] [Related]
19. Phase space volume scaling of generalized entropies and anomalous diffusion scaling governed by corresponding non-linear Fokker-Planck equations. Czégel D; Balogh SG; Pollner P; Palla G Sci Rep; 2018 Jan; 8(1):1883. PubMed ID: 29382874 [TBL] [Abstract][Full Text] [Related]
20. Fractional Fokker-Planck subdiffusion in alternating force fields. Heinsalu E; Patriarca M; Goychuk I; Hänggi P Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041137. PubMed ID: 19518203 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]