These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 23030856)

  • 1. Cooperative heterogeneous facilitation: multiple glassy states and glass-glass transition.
    Sellitto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):030502. PubMed ID: 23030856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic models of mode-coupling theory: the F12 scenario.
    Arenzon JJ; Sellitto M
    J Chem Phys; 2012 Aug; 137(8):084501. PubMed ID: 22938244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Percolation approach to glassy dynamics with continuously broken ergodicity.
    Arenzon JJ; Coniglio A; Fierro A; Sellitto M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020301. PubMed ID: 25215672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic facilitation picture of a higher-order glass singularity.
    Sellitto M; De Martino D; Caccioli F; Arenzon JJ
    Phys Rev Lett; 2010 Dec; 105(26):265704. PubMed ID: 21231681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disconnected glass-glass transitions and swallowtail bifurcations in microscopic spin models with facilitated dynamics.
    Sellitto M
    J Chem Phys; 2013 Jun; 138(22):224507. PubMed ID: 23781805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous and induced dynamic correlations in glass formers. II. Model calculations and comparison to numerical simulations.
    Berthier L; Biroli G; Bouchaud JP; Kob W; Miyazaki K; Reichman DR
    J Chem Phys; 2007 May; 126(18):184504. PubMed ID: 17508808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crossover from β to α Relaxation in Cooperative Facilitation Dynamics.
    Sellitto M
    Phys Rev Lett; 2015 Nov; 115(22):225701. PubMed ID: 26650310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory for Glassy Behavior of Supercooled Liquid Mixtures.
    Katira S; Garrahan JP; Mandadapu KK
    Phys Rev Lett; 2019 Sep; 123(10):100602. PubMed ID: 31573293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory.
    Mishra CK; Habdas P; Yodh AG
    J Phys Chem B; 2019 Jun; 123(24):5181-5188. PubMed ID: 31132279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microscopic Dynamics of Supercooled Liquids from First Principles.
    Janssen LM; Reichman DR
    Phys Rev Lett; 2015 Nov; 115(20):205701. PubMed ID: 26613452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Length scales in glass-forming liquids and related systems: a review.
    Karmakar S; Dasgupta C; Sastry S
    Rep Prog Phys; 2016 Jan; 79(1):016601. PubMed ID: 26684508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass-transition asymptotics in two theories of glassy dynamics: Self-consistent generalized Langevin equation and mode-coupling theory.
    Elizondo-Aguilera LF; Voigtmann T
    Phys Rev E; 2019 Oct; 100(4-1):042601. PubMed ID: 31770981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glass transitions and scaling laws within an alternative mode-coupling theory.
    Götze W; Schilling R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042117. PubMed ID: 25974449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On melting dynamics and the glass transition. II. Glassy dynamics as a melting process.
    Krzakala F; Zdeborová L
    J Chem Phys; 2011 Jan; 134(3):034513. PubMed ID: 21261374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-scale lattice Boltzmann and mode-coupling theory calculations of the flow of a glass-forming liquid.
    Papenkort S; Voigtmann T
    J Chem Phys; 2015 Nov; 143(20):204502. PubMed ID: 26627963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic theory of the glassy dynamics of passive and active network materials.
    Wang S; Wolynes PG
    J Chem Phys; 2013 Mar; 138(12):12A521. PubMed ID: 23556772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass formation and thermodynamics of supercooled monatomic liquids.
    Hoang VV; Odagaki T
    J Phys Chem B; 2011 Jun; 115(21):6946-56. PubMed ID: 21553835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural signature of slow dynamics and dynamic heterogeneity in two-dimensional colloidal liquids: glassy structural order.
    Kawasaki T; Tanaka H
    J Phys Condens Matter; 2011 May; 23(19):194121. PubMed ID: 21525551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analytical approach to the dynamics of facilitated spin models on random networks.
    Fennell PG; Gleeson JP; Cellai D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032824. PubMed ID: 25314497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.