These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Minimum free energy pathways and free energy profiles for conformational transitions based on atomistic molecular dynamics simulations. van der Vaart A; Karplus M J Chem Phys; 2007 Apr; 126(16):164106. PubMed ID: 17477588 [TBL] [Abstract][Full Text] [Related]
7. Computing conformational free energy differences in explicit solvent: An efficient thermodynamic cycle using an auxiliary potential and a free energy functional constructed from the end points. Harris RC; Deng N; Levy RM; Ishizuka R; Matubayasi N J Comput Chem; 2017 Jun; 38(15):1198-1208. PubMed ID: 28008630 [TBL] [Abstract][Full Text] [Related]
8. Free energy calculation using molecular dynamics simulation combined with the three-dimensional reference interaction site model theory. II. Thermodynamic integration along a spatial reaction coordinate. Miyata T; Ikuta Y; Hirata F J Chem Phys; 2011 Jan; 134(4):044127. PubMed ID: 21280707 [TBL] [Abstract][Full Text] [Related]
9. Accurate calculation of conformational free energy differences in explicit water: the confinement-solvation free energy approach. Esque J; Cecchini M J Phys Chem B; 2015 Apr; 119(16):5194-207. PubMed ID: 25807150 [TBL] [Abstract][Full Text] [Related]
10. Tracing the minimum-energy path on the free-energy surface. Fleurat-Lessard P; Ziegler T J Chem Phys; 2005 Aug; 123(8):084101. PubMed ID: 16164276 [TBL] [Abstract][Full Text] [Related]
11. Accurate free energy calculation along optimized paths. Chen C; Xiao Y J Comput Chem; 2010 May; 31(7):1368-75. PubMed ID: 19859916 [TBL] [Abstract][Full Text] [Related]
12. Direct determination of reaction paths and stationary points on potential of mean force surfaces. Li G; Cui Q J Mol Graph Model; 2005 Oct; 24(2):82-93. PubMed ID: 16005650 [TBL] [Abstract][Full Text] [Related]
13. From A to B in free energy space. Branduardi D; Gervasio FL; Parrinello M J Chem Phys; 2007 Feb; 126(5):054103. PubMed ID: 17302470 [TBL] [Abstract][Full Text] [Related]
14. Enhanced sampling of molecular dynamics simulation of peptides and proteins by double coupling to thermal bath. Chen C; Huang Y; Xiao Y J Biomol Struct Dyn; 2013; 31(2):206-14. PubMed ID: 22830440 [TBL] [Abstract][Full Text] [Related]
15. Understanding free-energy perturbation calculations through a model of harmonic oscillators: theory and implications to improve the sampling efficiency by molecular simulation. Wu D J Chem Phys; 2010 Dec; 133(24):244116. PubMed ID: 21197985 [TBL] [Abstract][Full Text] [Related]
16. Exploring reaction pathways with transition path and umbrella sampling: application to methyl maltoside. Dimelow RJ; Bryce RA; Masters AJ; Hillier IH; Burton NA J Chem Phys; 2006 Mar; 124(11):114113. PubMed ID: 16555880 [TBL] [Abstract][Full Text] [Related]
17. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations. Lu Z; Yang W J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525 [TBL] [Abstract][Full Text] [Related]
19. Efficient sampling over rough energy landscapes with high barriers: A combination of metadynamics with integrated tempering sampling. Yang YI; Zhang J; Che X; Yang L; Gao YQ J Chem Phys; 2016 Mar; 144(9):094105. PubMed ID: 26957155 [TBL] [Abstract][Full Text] [Related]
20. On the direct calculation of the free energy of quantization for molecular systems in the condensed phase. Geerke DP; Luber S; Marti KH; Van Gunsteren WF J Comput Chem; 2009 Mar; 30(4):514-23. PubMed ID: 18680218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]