These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 23031015)
1. Jets and sprays arising from a spark-induced oscillating bubble near a plate with a hole. Karri B; Ohl SW; Klaseboer E; Ohl CD; Khoo BC Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036309. PubMed ID: 23031015 [TBL] [Abstract][Full Text] [Related]
2. High-speed jetting and spray formation from bubble collapse. Karri B; Avila SR; Loke YC; O'Shea SJ; Klaseboer E; Khoo BC; Ohl CD Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):015303. PubMed ID: 22400617 [TBL] [Abstract][Full Text] [Related]
3. The dynamics of a non-equilibrium bubble near bio-materials. Ohl SW; Klaseboer E; Khoo BC Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103 [TBL] [Abstract][Full Text] [Related]
4. Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids. Faccio D; Tamošauskas G; Rubino E; Darginavičius J; Papazoglou DG; Tzortzakis S; Couairon A; Dubietis A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036304. PubMed ID: 23031010 [TBL] [Abstract][Full Text] [Related]
5. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall. Suslov SA; Ooi A; Manasseh R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208 [TBL] [Abstract][Full Text] [Related]
6. Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers. Vega EJ; Acero AJ; Montanero JM; Herrada MA; Gañán-Calvo AM Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063012. PubMed ID: 25019884 [TBL] [Abstract][Full Text] [Related]
7. Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ma X; Huang B; Zhao X; Wang Y; Chang Q; Qiu S; Fu X; Wang G Ultrason Sonochem; 2018 May; 43():80-90. PubMed ID: 29555291 [TBL] [Abstract][Full Text] [Related]
8. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound. Brujan EA; Ikeda T; Matsumoto Y Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873 [TBL] [Abstract][Full Text] [Related]
9. Lithotripter shock wave interaction with a bubble near various biomaterials. Ohl SW; Klaseboer E; Szeri AJ; Khoo BC Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337 [TBL] [Abstract][Full Text] [Related]
10. Numerical analysis of a gas bubble near bio-materials in an ultrasound field. Fong SW; Klaseboer E; Turangan CK; Khoo BC; Hung KC Ultrasound Med Biol; 2006 Jun; 32(6):925-42. PubMed ID: 16785014 [TBL] [Abstract][Full Text] [Related]
11. Manipulation of bubble collapse patterns near the wall of an adherent gas layer. Wei Z; Zhang C; Shen C; Wang L; Xin Z Ultrason Sonochem; 2023 Dec; 101():106722. PubMed ID: 38091740 [TBL] [Abstract][Full Text] [Related]
12. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions). Kiuru HJ Water Sci Technol; 2001; 43(8):1-7. PubMed ID: 11394261 [TBL] [Abstract][Full Text] [Related]
13. Numerical simulations of the aspherical collapse of laser and acoustically generated bubbles. Tsiglifis K; Pelekasis NA Ultrason Sonochem; 2007 Apr; 14(4):456-69. PubMed ID: 17208501 [TBL] [Abstract][Full Text] [Related]
14. Self-organization of ascending-bubble ensembles. Barmina EV; Kirichenko NA; Kuzmin PG; Shafeev GA Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053001. PubMed ID: 23767614 [TBL] [Abstract][Full Text] [Related]
15. Plasma core at the center of a sonoluminescing bubble. Bemani F; Sadighi-Bonabi R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013004. PubMed ID: 23410423 [TBL] [Abstract][Full Text] [Related]
16. An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study. Lu X; Chen C; Dong K; Li Z; Chen J Ultrason Sonochem; 2021 Nov; 79():105760. PubMed ID: 34653916 [TBL] [Abstract][Full Text] [Related]
17. Experimental studies of bubble dynamics inside a corner. Cui J; Chen ZP; Wang Q; Zhou TR; Corbett C Ultrason Sonochem; 2020 Jun; 64():104951. PubMed ID: 32106062 [TBL] [Abstract][Full Text] [Related]
18. Study on the bubble transport mechanism in an acoustic standing wave field. Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064 [TBL] [Abstract][Full Text] [Related]
19. Dynamics of an oscillating bubble in a narrow gap. Azam FI; Karri B; Ohl SW; Klaseboer E; Khoo BC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043006. PubMed ID: 24229275 [TBL] [Abstract][Full Text] [Related]
20. Air bubble bursting phenomenon at the air-water interface monitored by the piezoelectric-acoustic method. Nikolov A; Wasan D Adv Colloid Interface Sci; 2019 Oct; 272():101998. PubMed ID: 31446326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]