These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 23031024)

  • 1. Predicting enhanced mass flow rates in gas microchannels using nonkinetic models.
    Dadzie SK; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036318. PubMed ID: 23031024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels.
    Taheri P; Bahrami M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036311. PubMed ID: 23031017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers.
    Lv Q; Liu X; Wang E; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013007. PubMed ID: 23944549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulation of gas-phonon coupling in thermal transpiration flows.
    Guo X; Singh D; Murthy J; Alexeenko AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046310. PubMed ID: 19905439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.
    Gu XJ; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063020. PubMed ID: 25019892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport control within a microtube.
    Chu AK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061902. PubMed ID: 15697397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pressure-driven flow through a single nanopore.
    Velasco AE; Friedman SG; Pevarnik M; Siwy ZS; Taborek P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):025302. PubMed ID: 23005817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Filter-matrix lattice Boltzmann model for microchannel gas flows.
    Zhuo C; Zhong C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053311. PubMed ID: 24329383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized hydrodynamics and microflows.
    Al-Ghoul M; Chan Eu B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016301. PubMed ID: 15324163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow.
    Majumder M; Chopra N; Hinds BJ
    ACS Nano; 2011 May; 5(5):3867-77. PubMed ID: 21500837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order effects in rarefied channel flows.
    Struchtrup H; Torrilhon M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 2):046301. PubMed ID: 18999520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas flow through rough microchannels in the transition flow regime.
    Deng Z; Chen Y; Shao C
    Phys Rev E; 2016 Jan; 93(1):013128. PubMed ID: 26871175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing Knudsen layer phenomena using a lattice Boltzmann model.
    Zhang YH; Gu XJ; Barber RW; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046704. PubMed ID: 17155209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamics of granular gases of viscoelastic particles.
    Brilliantov NV; Pöschel T
    Philos Trans A Math Phys Eng Sci; 2002 Mar; 360(1792):415-28. PubMed ID: 16214686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients.
    Prabha SK; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative Knudsen force on heated microbeams.
    Zhu T; Ye W; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056316. PubMed ID: 22181507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apparatus for measuring pressure-driven transport through channels at high Knudsen numbers.
    Karakitsiou S; Holst B; Hoffmann AC
    Rev Sci Instrum; 2016 Dec; 87(12):125104. PubMed ID: 28040955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.