These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 23031140)
1. Behavioural adaptations of sheep to repeated acidosis challenges and effect of yeast supplementation. Commun L; Silberberg M; Mialon MM; Martin C; Veissier I Animal; 2012 Dec; 6(12):2011-22. PubMed ID: 23031140 [TBL] [Abstract][Full Text] [Related]
2. Risk of subacute ruminal acidosis in sheep with separate access to forage and concentrate. Commun L; Mialon MM; Martin C; Baumont R; Veissier I J Anim Sci; 2009 Oct; 87(10):3372-9. PubMed ID: 19574575 [TBL] [Abstract][Full Text] [Related]
3. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: feeding, ruminating, and lying behavior. DeVries TJ; Beauchemin KA; Dohme F; Schwartzkopf-Genswein KS J Dairy Sci; 2009 Oct; 92(10):5067-78. PubMed ID: 19762825 [TBL] [Abstract][Full Text] [Related]
4. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: ruminal pH. Dohme F; DeVries TJ; Beauchemin KA J Dairy Sci; 2008 Sep; 91(9):3554-67. PubMed ID: 18765614 [TBL] [Abstract][Full Text] [Related]
5. A single mild episode of subacute ruminal acidosis does not affect ruminal barrier function in the short term. Penner GB; Oba M; Gäbel G; Aschenbach JR J Dairy Sci; 2010 Oct; 93(10):4838-45. PubMed ID: 20855017 [TBL] [Abstract][Full Text] [Related]
6. Rumen lipopolysaccharide and inflammation during grain adaptation and subacute ruminal acidosis in steers. Gozho GN; Krause DO; Plaizier JC J Dairy Sci; 2006 Nov; 89(11):4404-13. PubMed ID: 17033028 [TBL] [Abstract][Full Text] [Related]
7. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: feed sorting. Devries TJ; Dohme F; Beauchemin KA J Dairy Sci; 2008 Oct; 91(10):3958-67. PubMed ID: 18832220 [TBL] [Abstract][Full Text] [Related]
8. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. Chung YH; Walker ND; McGinn SM; Beauchemin KA J Dairy Sci; 2011 May; 94(5):2431-9. PubMed ID: 21524535 [TBL] [Abstract][Full Text] [Related]
9. Experimental feed induction of ruminal lactic, propionic, or butyric acidosis in sheep. Lettat A; Nozière P; Silberberg M; Morgavi DP; Berger C; Martin C J Anim Sci; 2010 Sep; 88(9):3041-6. PubMed ID: 20495125 [TBL] [Abstract][Full Text] [Related]
10. Modulation of chewing behavior and reticular pH in nonlactating cows challenged with concentrate-rich diets supplemented with phytogenic compounds and autolyzed yeast. Kröger I; Humer E; Neubauer V; Reisinger N; Aditya S; Zebeli Q J Dairy Sci; 2017 Dec; 100(12):9702-9714. PubMed ID: 28964521 [TBL] [Abstract][Full Text] [Related]
11. Changes in the relative population size of selected ruminal bacteria following an induced episode of acidosis in beef heifers receiving viable and non-viable active dried yeast. Mohammed R; Vyas D; Yang WZ; Beauchemin KA J Appl Microbiol; 2017 Jun; 122(6):1483-1496. PubMed ID: 28317285 [TBL] [Abstract][Full Text] [Related]
12. Repeated acidosis challenges and live yeast supplementation shape rumen microbiota and fermentations and modulate inflammatory status in sheep. Silberberg M; Chaucheyras-Durand F; Commun L; Mialon MM; Monteils V; Mosoni P; Morgavi DP; Martin C Animal; 2013 Dec; 7(12):1910-20. PubMed ID: 24128750 [TBL] [Abstract][Full Text] [Related]
13. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. Wahrmund JL; Ronchesel JR; Krehbiel CR; Goad CL; Trost SM; Richards CJ J Anim Sci; 2012 Aug; 90(8):2794-801. PubMed ID: 22408086 [TBL] [Abstract][Full Text] [Related]
14. Severity of ruminal acidosis in primiparous holstein cows during the periparturient period. Penner GB; Beauchemin KA; Mutsvangwa T J Dairy Sci; 2007 Jan; 90(1):365-75. PubMed ID: 17183105 [TBL] [Abstract][Full Text] [Related]
15. Effects of rumen acid load from feed and forage particle size on ruminal pH and dry matter intake in the lactating dairy cow. Rustomo B; AlZahal O; Odongo NE; Duffield TF; McBride BW J Dairy Sci; 2006 Dec; 89(12):4758-68. PubMed ID: 17106107 [TBL] [Abstract][Full Text] [Related]
16. Effects of live yeast cell supplementation to high concentrate diets on the toxicokinetics of ochratoxin A in sheep. Blank R; Wolffram S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jan; 26(1):119-26. PubMed ID: 19680879 [TBL] [Abstract][Full Text] [Related]
17. Effect of acarbose on milk yield and composition in early-lactation dairy cattle fed a ration to induce subacute ruminal acidosis. McLaughlin CL; Thompson A; Greenwood K; Sherington J; Bruce C J Dairy Sci; 2009 Sep; 92(9):4481-8. PubMed ID: 19700709 [TBL] [Abstract][Full Text] [Related]
18. Effects of supplementation frequency on ruminal fermentation and digestion by steers fed medium-quality hay and supplemented with a soybean hull and corn gluten feed blend. Drewnoski ME; Poore MH J Anim Sci; 2012 Mar; 90(3):881-91. PubMed ID: 22064733 [TBL] [Abstract][Full Text] [Related]
19. Effects of feeding frequency on intake, ruminal fermentation, and feeding behavior in heifers fed high-concentrate diets. Robles V; González LA; Ferret A; Manteca X; Calsamiglia S J Anim Sci; 2007 Oct; 85(10):2538-47. PubMed ID: 17609471 [TBL] [Abstract][Full Text] [Related]
20. Effects of active dried Saccharomyces cerevisiae on ruminal fermentation and bacterial community during the short-term ruminal acidosis challenge model in Holstein calves. Watanabe Y; Kim YH; Kushibiki S; Ikuta K; Ichijo T; Sato S J Dairy Sci; 2019 Jul; 102(7):6518-6531. PubMed ID: 31030914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]