These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23031175)

  • 1. Real-time two-dimensional asynchronous control of a computer cursor with a single subdural electrode.
    Márquez-Chin C; Popovic MR; Sanin E; Chen R; Lozano AM
    J Spinal Cord Med; 2012 Sep; 35(5):382-91. PubMed ID: 23031175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A binary method for simple and accurate two-dimensional cursor control from EEG with minimal subject training.
    Kayagil TA; Bai O; Henriquez CS; Lin P; Furlani SJ; Vorbach S; Hallett M
    J Neuroeng Rehabil; 2009 May; 6():14. PubMed ID: 19419576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocorticographically controlled brain-computer interfaces using motor and sensory imagery in patients with temporary subdural electrode implants. Report of four cases.
    Felton EA; Wilson JA; Williams JC; Garell PC
    J Neurosurg; 2007 Mar; 106(3):495-500. PubMed ID: 17367076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stereoelectroencephalography for continuous two-dimensional cursor control in a brain-machine interface.
    Vadera S; Marathe AR; Gonzalez-Martinez J; Taylor DM
    Neurosurg Focus; 2013 Jun; 34(6):E3. PubMed ID: 23724837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-mm functional decoupling of electrocortical signals through closed-loop BMI learning.
    Ledochowitsch P; Koralek AC; Moses D; Carmena JM; Maharbiz MM
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5622-5. PubMed ID: 24111012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Timing of EEG-based cursor control.
    Wolpaw JR; Flotzinger D; Pfurtscheller G; McFarland DJ
    J Clin Neurophysiol; 1997 Nov; 14(6):529-38. PubMed ID: 9458060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant improvement in one-dimensional cursor control using Laplacian electroencephalography over electroencephalography.
    Boudria Y; Feltane A; Besio W
    J Neural Eng; 2014 Jun; 11(3):035014. PubMed ID: 24836436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEG-based brain computer interface (BCI). Search for optimal electrode positions and frequency components.
    Pfurtscheller G; Flotzinger D; Pregenzer M; Wolpaw JR; McFarland D
    Med Prog Technol; 1995-1996; 21(3):111-21. PubMed ID: 8776708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A brain-controlled switch for asynchronous control applications.
    Mason SG; Birch GE
    IEEE Trans Biomed Eng; 2000 Oct; 47(10):1297-307. PubMed ID: 11059164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decoding movement-related cortical potentials from electrocorticography.
    Reddy CG; Reddy GG; Kawasaki H; Oya H; Miller LE; Howard MA
    Neurosurg Focus; 2009 Jul; 27(1):E11. PubMed ID: 19569886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of a neuroprosthesis for grasping using off-line classification of electrocorticographic signals: case study.
    Márquez-Chin C; Popovic MR; Cameron T; Lozano AM; Chen R
    Spinal Cord; 2009 Nov; 47(11):802-8. PubMed ID: 19381156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unilateral subdural motor cortex stimulation improves essential tremor but not Parkinson's disease.
    Moro E; Schwalb JM; Piboolnurak P; Poon YY; Hamani C; Hung SW; Arenovich T; Lang AE; Chen R; Lozano AM
    Brain; 2011 Jul; 134(Pt 7):2096-105. PubMed ID: 21646329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Point-and-click cursor control with an intracortical neural interface system by humans with tetraplegia.
    Kim SP; Simeral JD; Hochberg LR; Donoghue JP; Friehs GM; Black MJ
    IEEE Trans Neural Syst Rehabil Eng; 2011 Apr; 19(2):193-203. PubMed ID: 21278024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer control using human intracortical local field potentials.
    Kennedy PR; Kirby MT; Moore MM; King B; Mallory A
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):339-44. PubMed ID: 15473196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
    Revechkis B; Aflalo TN; Kellis S; Pouratian N; Andersen RA
    J Neural Eng; 2014 Dec; 11(6):066014. PubMed ID: 25394419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A brain-computer interface using electrocorticographic signals in humans.
    Leuthardt EC; Schalk G; Wolpaw JR; Ojemann JG; Moran DW
    J Neural Eng; 2004 Jun; 1(2):63-71. PubMed ID: 15876624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Automatic Error Detect-and-Undo System in Human Intracortical Brain-Computer Interfaces.
    Even-Chen N; Stavisky SD; Pandarinath C; Nuyujukian P; Blabe CH; Hochberg LR; Henderson JM; Shenoy KV
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1771-1784. PubMed ID: 29989931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.