These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Advanced recognition of explosives in traces on polymer surfaces using LIBS and supervised learning classifiers. Serrano J; Moros J; Sánchez C; Macías J; Laserna JJ Anal Chim Acta; 2014 Jan; 806():107-16. PubMed ID: 24331046 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Moros J; Lorenzo JA; Lucena P; Tobaria LM; Laserna JJ Anal Chem; 2010 Feb; 82(4):1389-400. PubMed ID: 20085236 [TBL] [Abstract][Full Text] [Related]
4. Classification of explosive residues on organic substrates using laser induced breakdown spectroscopy. De Lucia FC; Gottfried JL Appl Opt; 2012 Mar; 51(7):B83-92. PubMed ID: 22410930 [TBL] [Abstract][Full Text] [Related]
5. Recognition of explosives fingerprints on objects for courier services using machine learning methods and laser-induced breakdown spectroscopy. Moros J; Serrano J; Gallego FJ; Macías J; Laserna JJ Talanta; 2013 Jun; 110():108-17. PubMed ID: 23618183 [TBL] [Abstract][Full Text] [Related]
6. Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Gottfried JL; De Lucia FC; Munson CA; Miziolek AW Anal Bioanal Chem; 2009 Sep; 395(2):283-300. PubMed ID: 19418042 [TBL] [Abstract][Full Text] [Related]
7. Pressure effects in laser-induced plasmas of trinitrotoluene and pyrene by laser-induced breakdown spectroscopy (LIBS). Delgado T; Vadillo JM; Laserna JJ Appl Spectrosc; 2014; 68(1):33-8. PubMed ID: 24405951 [TBL] [Abstract][Full Text] [Related]
8. Range-adaptive standoff recognition of explosive fingerprints on solid surfaces using a supervised learning method and laser-induced breakdown spectroscopy. Gaona I; Serrano J; Moros J; Laserna JJ Anal Chem; 2014 May; 86(10):5045-52. PubMed ID: 24773280 [TBL] [Abstract][Full Text] [Related]
9. Toward the optimization of double-pulse LIBS underwater: effects of experimental parameters on the reproducibility and dynamics of laser-induced cavitation bubble. Cristoforetti G; Tiberi M; Simonelli A; Marsili P; Giammanco F Appl Opt; 2012 Mar; 51(7):B30-41. PubMed ID: 22410923 [TBL] [Abstract][Full Text] [Related]
10. Fast detection and characterization of organic and inorganic gunshot residues on the hands of suspects by CMV-GC-MS and LIBS. Tarifa A; Almirall JR Sci Justice; 2015 May; 55(3):168-75. PubMed ID: 25934368 [TBL] [Abstract][Full Text] [Related]
11. Detection of uranium using laser-induced breakdown spectroscopy. Chinni RC; Cremers DA; Radziemski LJ; Bostian M; Navarro-Northrup C Appl Spectrosc; 2009 Nov; 63(11):1238-50. PubMed ID: 19891832 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of femtosecond laser-induced breakdown spectroscopy for explosive residue detection. De Lucia FC; Gottfried JL; Miziolek AW Opt Express; 2009 Jan; 17(2):419-25. PubMed ID: 19158854 [TBL] [Abstract][Full Text] [Related]
13. A study of the composition of the products of laser-induced breakdown of hexogen, octogen, pentrite and trinitrotoluene using selected ion flow tube mass spectrometry and UV-Vis spectrometry. Sovová K; Dryahina K; Spanel P; Kyncl M; Civis S Analyst; 2010 May; 135(5):1106-14. PubMed ID: 20419263 [TBL] [Abstract][Full Text] [Related]
15. Quantification and aging of the post-blast residue of TNT landmines. Oxley JC; Smith JL; Resende E; Pearce E J Forensic Sci; 2003 Jul; 48(4):742-53. PubMed ID: 12877289 [TBL] [Abstract][Full Text] [Related]
16. New Raman-laser-induced breakdown spectroscopy identity of explosives using parametric data fusion on an integrated sensing platform. Moros J; Laserna JJ Anal Chem; 2011 Aug; 83(16):6275-85. PubMed ID: 21696143 [TBL] [Abstract][Full Text] [Related]
17. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines. Sheaff CN; Eastwood D; Wai CM Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719 [TBL] [Abstract][Full Text] [Related]
18. Nd:YAG-CO(2) double-pulse laser induced breakdown spectroscopy of organic films. Weidman M; Baudelet M; Palanco S; Sigman M; Dagdigian PJ; Richardson M Opt Express; 2010 Jan; 18(1):259-66. PubMed ID: 20173846 [TBL] [Abstract][Full Text] [Related]
19. Theoretical modeling of laser ablation of quaternary bronze alloys: case studies comparing femtosecond and nanosecond LIBS experimental data. Fornarini L; Fantoni R; Colao F; Santagata A; Teghil R; Elhassan A; Harith MA J Phys Chem A; 2009 Dec; 113(52):14364-74. PubMed ID: 19817368 [TBL] [Abstract][Full Text] [Related]
20. [Detection of metal ions in water solution by laser induced breakdown spectroscopy]. Wu JL; Fu YX; Li Y; Lu Y; Cui ZF; Zheng RE Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Sep; 28(9):1979-82. PubMed ID: 19093543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]