BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23032430)

  • 1. Tribology and hydrophobicity of a biocompatible GPTMS/PFPE coating on Ti6Al4V surfaces.
    Panjwani B; Sinha SK
    J Mech Behav Biomed Mater; 2012 Nov; 15():103-11. PubMed ID: 23032430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tribological characterization of a biocompatible thin film of UHMWPE on Ti6Al4V and the effects of PFPE as top lubricating layer.
    Panjwani B; Satyanarayana N; Sinha SK
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):953-60. PubMed ID: 21783105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tribological characterization of zirconia coatings deposited on Ti6Al4V components for orthopedic applications.
    Berni M; Lopomo N; Marchiori G; Gambardella A; Boi M; Bianchi M; Visani A; Pavan P; Russo A; Marcacci M
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():643-55. PubMed ID: 26952468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Smooth, aggregate-free self-assembled monolayer deposition of silane coupling agents on silicon dioxide.
    Diebold RM; Clarke DR
    Langmuir; 2012 Nov; 28(44):15513-20. PubMed ID: 23066941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the biocompatibility of perfluoropolyether dimethacrylate network using an organotypic method.
    Jellali R; Duval JL; Leclerc E
    Mater Sci Eng C Mater Biol Appl; 2016 Aug; 65():295-302. PubMed ID: 27157755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multilayers of poly(ethyleneimine)/poly(acrylic acid) coatings on Ti6Al4V acting as lubricated polymer-bearing interface.
    Deng Y; Sun J; Ni X; Xiong D
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):2141-2152. PubMed ID: 31904181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatibility and mechanical properties of diamond-like coatings on cobalt-chromium-molybdenum steel and titanium-aluminum-vanadium biomedical alloys.
    Hinüber C; Kleemann C; Friederichs RJ; Haubold L; Scheibe HJ; Schuelke T; Boehlert C; Baumann MJ
    J Biomed Mater Res A; 2010 Nov; 95(2):388-400. PubMed ID: 20648536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of novel silane coatings on titanium implant surfaces.
    Matinlinna JP; Tsoi JK; de Vries J; Busscher HJ
    Clin Oral Implants Res; 2013 Jun; 24(6):688-97. PubMed ID: 22725840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Ti-C-N coatings deposited on Ti6Al4V for biomedical applications.
    de Viteri VS; Barandika MG; de Gopegui UR; Bayón R; Zubizarreta C; Fernández X; Igartua A; Agullo-Rueda F
    J Inorg Biochem; 2012 Dec; 117():359-66. PubMed ID: 23062699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polysaccharide-protein surface modification of titanium via a layer-by-layer technique: characterization and cell behaviour aspects.
    Cai K; Rechtenbach A; Hao J; Bossert J; Jandt KD
    Biomaterials; 2005 Oct; 26(30):5960-71. PubMed ID: 15913761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-scale study of the nucleation and growth of calcium phosphate coating on titanium implants.
    Barrere F; Snel MM; van Blitterswijk CA; de Groot K; Layrolle P
    Biomaterials; 2004 Jun; 25(14):2901-10. PubMed ID: 14962569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification of surface sol-gel derived titanium oxide films by self-assembled monolayers (SAMs) and non-specific protein adsorption studies.
    Advincula M; Fan X; Lemons J; Advincula R
    Colloids Surf B Biointerfaces; 2005 Apr; 42(1):29-43. PubMed ID: 15784324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae.
    Park JW; Park KB; Suh JY
    Biomaterials; 2007 Aug; 28(22):3306-13. PubMed ID: 17462729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium modified with layer-by-layer sol-gel tantalum oxide and an organodiphosphonic acid: a coating for hydroxyapatite growth.
    Arnould C; Volcke C; Lamarque C; Thiry PA; Delhalle J; Mekhalif Z
    J Colloid Interface Sci; 2009 Aug; 336(2):497-503. PubMed ID: 19481760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface hardening by anodizing and heat treatments of Ti6Al4V alloys for articular prostheses.
    Gil FJ; Ginebra MP; Planell JA
    Biomed Mater Eng; 2002; 12(3):271-81. PubMed ID: 12446942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioinspired Surface Functionalization of Titanium Alloy for Enhanced Lubrication and Bacterial Resistance.
    Liu S; Zhang Q; Han Y; Sun Y; Zhang Y; Zhang H
    Langmuir; 2019 Oct; 35(40):13189-13195. PubMed ID: 31547644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings.
    Zhang C; Liu Y; Wen S; Wang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17571-8. PubMed ID: 25244595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanolubrication: patterned lubricating films using ultraviolet (UV) irradiation on hard disks.
    Zhang J; Hsu SM; Liew YF
    J Nanosci Nanotechnol; 2007 Jan; 7(1):286-92. PubMed ID: 17455493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug delivery from gold and titanium surfaces using self-assembled monolayers.
    Mani G; Johnson DM; Marton D; Feldman MD; Patel D; Ayon AA; Agrawal CM
    Biomaterials; 2008 Dec; 29(34):4561-73. PubMed ID: 18790530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.