These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 23032600)

  • 1. A systematic study of polarons due to oxygen vacancy formation at the rutile TiO2(110) surface by GGA + U and HSE06 methods.
    Shibuya T; Yasuoka K; Mirbt S; Sanyal B
    J Phys Condens Matter; 2012 Oct; 24(43):435504. PubMed ID: 23032600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+U, and hybrid DFT calculations.
    Finazzi E; Di Valentin C; Pacchioni G; Selloni A
    J Chem Phys; 2008 Oct; 129(15):154113. PubMed ID: 19045182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge compensation in trivalent cation doped bulk rutile TiO2.
    Iwaszuk A; Nolan M
    J Phys Condens Matter; 2011 Aug; 23(33):334207. PubMed ID: 21813953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation.
    Chrétien S; Metiu H
    J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Examination of oxygen vacancy formation in Mn-doped CeO2 (111) using DFT+U and the hybrid functional HSE06.
    Krcha MD; Janik MJ
    Langmuir; 2013 Aug; 29(32):10120-31. PubMed ID: 23848253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density-functional calculations of the structure of near-surface oxygen vacancies and electron localization on CeO2(111).
    Ganduglia-Pirovano MV; Da Silva JL; Sauer J
    Phys Rev Lett; 2009 Jan; 102(2):026101. PubMed ID: 19257295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. O2 and vacancy diffusion on rutile(110): pathways and electronic properties.
    Tilocca A; Selloni A
    Chemphyschem; 2005 Sep; 6(9):1911-6. PubMed ID: 16080219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DFT+U calculations of crystal lattice, electronic structure, and phase stability under pressure of TiO2 polymorphs.
    Arroyo-de Dompablo ME; Morales-García A; Taravillo M
    J Chem Phys; 2011 Aug; 135(5):054503. PubMed ID: 21823708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling localized photoinduced electrons in rutile-TiO2 using periodic DFT+U methodology.
    Jedidi A; Markovits A; Minot C; Bouzriba S; Abderraba M
    Langmuir; 2010 Nov; 26(21):16232-8. PubMed ID: 20572639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110).
    Haubrich J; Kaxiras E; Friend CM
    Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction mechanisms of the CuO(111) surface through surface oxygen vacancy formation and hydrogen adsorption.
    Maimaiti Y; Nolan M; Elliott SD
    Phys Chem Chem Phys; 2014 Feb; 16(7):3036-46. PubMed ID: 24394338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and reactions of O2 on anatase TiO2.
    Li YF; Aschauer U; Chen J; Selloni A
    Acc Chem Res; 2014 Nov; 47(11):3361-8. PubMed ID: 24742024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2(101).
    Cheng H; Selloni A
    J Chem Phys; 2009 Aug; 131(5):054703. PubMed ID: 19673581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations.
    Ferrari AM; Pisani C; Cinquini F; Giordano L; Pacchioni G
    J Chem Phys; 2007 Nov; 127(17):174711. PubMed ID: 17994846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatase-rutile phase transformation of titanium dioxide bulk material: a DFT + U approach.
    Vu NH; Le HV; Cao TM; Pham VV; Le HM; Nguyen-Manh D
    J Phys Condens Matter; 2012 Oct; 24(40):405501. PubMed ID: 22951569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics investigation of oxygen vacancy diffusion in rutile.
    Jug K; Nair NN; Bredow T
    Phys Chem Chem Phys; 2005 Jul; 7(13):2616-21. PubMed ID: 16189572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT+U study of defects in bulk rutile TiO(2).
    Stausholm-Møller J; Kristoffersen HH; Hinnemann B; Madsen GK; Hammer B
    J Chem Phys; 2010 Oct; 133(14):144708. PubMed ID: 20950031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the polaronic nature of p-type defects in Cu2O: the failure of GGA and GGA + U.
    Scanlon DO; Morgan BJ; Watson GW
    J Chem Phys; 2009 Sep; 131(12):124703. PubMed ID: 19791908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid functional study of the NASICON-type Na3V2(PO4)3: crystal and electronic structures, and polaron-Na vacancy complex diffusion.
    Bui KM; Dinh VA; Okada S; Ohno T
    Phys Chem Chem Phys; 2015 Nov; 17(45):30433-9. PubMed ID: 26509737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of Feasibility of Polaronic OER on (110) Surface of Rutile TiO
    Pada Sarker H; Abild-Pedersen F; Bajdich M
    Chemphyschem; 2024 Jun; 25(11):e202400060. PubMed ID: 38427793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.