These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 2303268)

  • 1. Use of the impedance method to calculate 3-D power deposition patterns for hyperthermia with capacitive plate electrodes.
    Orcutt N; Gandhi OP
    IEEE Trans Biomed Eng; 1990 Jan; 37(1):36-43. PubMed ID: 2303268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method.
    Shaw JA; Durney CH; Christensen DA
    IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves.
    Gelvich EA; Mazokhin VN
    IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse method to optimize heating conditions in RF-capacitive hyperthermia.
    Tsuda N; Kuroda K; Suzuki Y
    IEEE Trans Biomed Eng; 1996 Oct; 43(10):1029-37. PubMed ID: 9214820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The possibilities of hyperthermia from an engineering standpoint].
    Saitoh Y; Matsuda J; Kato K
    Gan To Kagaku Ryoho; 1989 Apr; 16(4 Pt 2-2):1425-31. PubMed ID: 2730047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 27 MHz conformal capacitive ring (CR) applicators for uniform hyperthermic/diathermic treatment of body segments with axial fields.
    Raganella L; Banci G; Vannucci I; Franconi C; Tiberio CA
    IEEE Trans Biomed Eng; 1989 Nov; 36(11):1124-32. PubMed ID: 2807321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of applicators for a 27 MHz multielectrode current source interstitial hyperthermia system; impedance matching and effective power.
    Kaatee RS; Crezee J; Kanis AP; Lagendijk JJ; Levendag PC; Visser AG
    Phys Med Biol; 1997 Jun; 42(6):1087-108. PubMed ID: 9194130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Body conformable 915 MHz microstrip array applicators for large surface area hyperthermia.
    Lee ER; Wilsey TR; Tarczy-Hornoch P; Kapp DS; Fessenden P; Lohrbach A; Prionas SD
    IEEE Trans Biomed Eng; 1992 May; 39(5):470-83. PubMed ID: 1526638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application.
    Kok HP; de Greef M; van Wieringen N; Correia D; Hulshof MC; Zum Vörde Sive Vörding PJ; Sijbrands J; Bel A; Crezee J
    Int J Hyperthermia; 2010; 26(4):376-88. PubMed ID: 20230249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model for impedance determinations and power deposition characterization in three-electrode configurations for capacitive radio frequency hyperthermia--Part A: Impedance determinations.
    Morand A; Bolomey JC
    IEEE Trans Biomed Eng; 1987 Mar; 34(3):217-22. PubMed ID: 3570311
    [No Abstract]   [Full Text] [Related]  

  • 11. Optimal power deposition with finite-sized, planar hyperthermia applicator arrays.
    Tharp HS; Roemer RB
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):569-79. PubMed ID: 1601438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of specific absorption rate distribution using capacitive electrodes and inductive aperture-type applicators: implications for radiofrequency hyperthermia.
    Kato H; Hand JW; Prior MV; Furukawa M; Yamamoto O; Ishida T
    IEEE Trans Biomed Eng; 1991 Jul; 38(7):644-7. PubMed ID: 1879856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of blood perfusion rate on the optimization of RF-capacitive hyperthermia.
    Fujita S; Tamazawa M; Kuroda K
    IEEE Trans Biomed Eng; 1998 Sep; 45(9):1182-6. PubMed ID: 9735568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional power deposition for hyperthermia: theoretical approaches and considerations.
    Oleson JR
    Cancer Res; 1984 Oct; 44(10 Suppl):4761s-4764s. PubMed ID: 6467229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of annular-phased arrays of dipoles for hyperthermia of deep-seated tumors.
    Chen JY; Gandhi OP
    IEEE Trans Biomed Eng; 1992 Mar; 39(3):209-16. PubMed ID: 1555850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of a capacitive-coupling interstitial hyperthermia system at 27 MHz: study of different applicator configurations.
    Deurloo IK; Visser AG; Morawska M; van Geel CA; van Rhoon GC; Levendag PC
    Phys Med Biol; 1991 Jan; 36(1):119-32. PubMed ID: 2006211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and clinical evaluation of a prototype hyperthermia system.
    Uozumi H; Baba Y; Yasunaga T; Takahashi M
    Radiat Med; 1987; 5(4):142-50. PubMed ID: 3321198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A numerical study of rapid heating for high temperature radio frequency hyperthermia.
    Anderson G; Ye X; Henle K; Yang Z; Li G
    Int J Biomed Comput; 1994 May; 35(4):297-307. PubMed ID: 8063456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Power deposition properties of a travelling-wave applicator for interstitial hyperthermia.
    Strickland PC
    IEEE Trans Biomed Eng; 1993 Oct; 40(10):1079-81. PubMed ID: 8294135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAR distributions in interstitial microwave antenna arrays with a single dipole displacement.
    Clibbon KL; McCowen A; Hand JW
    IEEE Trans Biomed Eng; 1993 Sep; 40(9):925-32. PubMed ID: 8288284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.