These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23033023)

  • 1. Method to evaluate beam quality of Gaussian beams with aberrations.
    Qiu Y; Huang L; Gong M; Qiang L; Yan P; Zhang H
    Appl Opt; 2012 Sep; 51(27):6539-43. PubMed ID: 23033023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cross-compensation of Zernike aberrations in Gaussian beam optics.
    Czuchnowski J; Prevedel R
    Opt Lett; 2021 Jul; 46(14):3480-3483. PubMed ID: 34264243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zernike monomials in wide field of view optical designs.
    Johnson TP; Sasian J
    Appl Opt; 2020 Aug; 59(22):G146-G153. PubMed ID: 32749327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orthonormal aberration polynomials for anamorphic optical imaging systems with circular pupils.
    Mahajan VN
    Appl Opt; 2012 Jun; 51(18):4087-91. PubMed ID: 22722284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zernike-gauss polynomials and optical aberrations of systems with gaussian pupils.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8057-9. PubMed ID: 21068908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Abnormal distortion and control of a Gaussian beam in circular aperture diffraction.
    Wang Q; Xia X
    Appl Opt; 2021 Nov; 60(32):10035-10041. PubMed ID: 34807106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts.
    Mahajan VN; Aftab M
    Appl Opt; 2010 Nov; 49(33):6489-501. PubMed ID: 21102675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the propagation of apertured high-order Laguerre-Gaussian beams by a user-friendly version of the mode expansion method.
    Cagniot E; Fromager M; Ait-Ameur K
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):484-91. PubMed ID: 20208938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propagation of a general-type beam through a truncated fractional Fourier transform optical system.
    Zhao C; Cai Y
    J Opt Soc Am A Opt Image Sci Vis; 2010 Mar; 27(3):637-47. PubMed ID: 20208958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive approach to deal with instrumental optical aberrations effects in high-accuracy photon's orbital angular momentum spectrum measurements.
    Uribe-Patarroyo N; Alvarez-Herrero A; Belenguer T
    Opt Express; 2010 Sep; 18(20):21111-20. PubMed ID: 20941007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strehl ratio and amplitude-weighted generalized orthonormal Zernike-based polynomials.
    Mafusire C; Krüger TP
    Appl Opt; 2017 Mar; 56(8):2336-2345. PubMed ID: 28375280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere.
    Eyyuboğlu HT; Baykal Y
    J Opt Soc Am A Opt Image Sci Vis; 2005 Dec; 22(12):2709-18. PubMed ID: 16396032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating propagation properties of misplaced Hermite-Gaussian beams.
    Huang C; Lu H
    J Opt Soc Am A Opt Image Sci Vis; 2014 Aug; 31(8):1762-5. PubMed ID: 25121532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of a TEM10 beam into two nearly Gaussian beams.
    Buric MP; Falk J; Woodruff SD
    Appl Opt; 2010 Feb; 49(4):739-44. PubMed ID: 20119028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of hollow Gaussian beams by spatial filtering.
    Liu Z; Zhao H; Liu J; Lin J; Ahmad MA; Liu S
    Opt Lett; 2007 Aug; 32(15):2076-8. PubMed ID: 17671541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Maréchal intensity criteria modified for gaussian beams.
    Lowenthal DD
    Appl Opt; 1974 Sep; 13(9):2126-33. PubMed ID: 20134640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix method for beam propagation using Gaussian Hermite polynomials.
    McDuff R
    Appl Opt; 1990 Feb; 29(6):802-8. PubMed ID: 20556187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The non-diffracting nature of truncated Hermite-Gaussian beams.
    Bencheikh A; Forbes A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Nov; 37(11):C1-C6. PubMed ID: 33175724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zernike polynomials and optical aberrations.
    Mahajan VN
    Appl Opt; 1995 Dec; 34(34):8060-2. PubMed ID: 21068909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balanced diffraction aberrations, independent of the observation point: application to a tilted dielectric plate.
    Sheppard CJ
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):2150-61. PubMed ID: 24322870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.