These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23033088)

  • 1. Visible light Laue diffraction from woodpile photonic crystals.
    Brüser B; Staude I; von Freymann G; Wegener M; Pietsch U
    Appl Opt; 2012 Oct; 51(28):6732-7. PubMed ID: 23033088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the light-scattering form factor on the Bragg diffraction patterns of arrays of metallic nanoparticles.
    Gonçalves MR; Siegel A; Marti O
    J Microsc; 2008 Mar; 229(Pt 3):475-82. PubMed ID: 18331498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study of photonic band gaps in woodpile crystals.
    Gralak B; de Dood M; Tayeb G; Enoch S; Maystre D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066601. PubMed ID: 16241362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonspherical ZnS colloidal building blocks for three-dimensional photonic crystals.
    Liddell CM; Summers CJ
    J Colloid Interface Sci; 2004 Jun; 274(1):103-6. PubMed ID: 15120283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photonics with multiwall carbon nanotube arrays.
    Lidorikis E; Ferrari AC
    ACS Nano; 2009 May; 3(5):1238-48. PubMed ID: 19368375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the structure-induced enhanced absorption in three-dimensional metallic photonic crystals.
    Sang HY; Li ZY; Gu BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 2):066611. PubMed ID: 15697530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional structure and defects in colloidal photonic crystals revealed by tomographic scanning transmission X-ray microscopy.
    Hilhorst J; van Schooneveld MM; Wang J; de Smit E; Tyliszczak T; Raabe J; Hitchcock AP; Obst M; de Groot FM; Petukhov AV
    Langmuir; 2012 Feb; 28(7):3614-20. PubMed ID: 22260512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the refractive index of three-dimensional photonic crystals through multilayer deposition of CdS films.
    Buso D; Nicoletti E; Li J; Gu M
    Opt Express; 2010 Jan; 18(2):1033-40. PubMed ID: 20173924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peculiarities of the band structure of multi-component photonic crystals with different dimensions.
    Samusev AK; Samusev KB; Rybin MV; Limonov MF
    J Phys Condens Matter; 2010 Mar; 22(11):115401. PubMed ID: 21389463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bragg rods and multiple X-ray scattering in random-stacking colloidal crystals.
    Petukhov AV; Dolbnya IP; Aarts DG; Vroege GJ; Lekkerkerker HN
    Phys Rev Lett; 2003 Jan; 90(2):028304. PubMed ID: 12570586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of enhanced absorption in 3D-woodpile metallic photonic crystals.
    Hossain MM; Chen G; Jia B; Wang XH; Gu M
    Opt Express; 2010 Apr; 18(9):9048-54. PubMed ID: 20588751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray diffraction of heavy-atom labelled two-dimensional crystals of rhodopsin identifies the position of cysteine 140 in helix 3 and cysteine 316 in helix 8.
    Mielke T; Villa C; Edwards PC; Schertler GF; Heyn MP
    J Mol Biol; 2002 Feb; 316(3):693-709. PubMed ID: 11866527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liquid-like movements in crystalline insulin.
    Caspar DL; Clarage J; Salunke DM; Clarage M
    Nature; 1988 Apr; 332(6165):659-62. PubMed ID: 3282173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.
    Glushko O; Meisels R; Kuchar F
    Opt Express; 2010 Mar; 18(7):7101-7. PubMed ID: 20389731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier-Bessel analysis of localized states and photonic bandgaps in 12-fold photonic quasi-crystals.
    Newman SR; Gauthier RC
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2344-9. PubMed ID: 23201795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference fringes in multiple Bragg-Laue mode.
    Fukamachi T; Hirano K; Negishi R; Kanematsu Y; Jongsukswat S; Hirano K; Kawamura T
    Acta Crystallogr A; 2011 Mar; 67(Pt 2):154-9. PubMed ID: 21325718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flat lensing in the visible frequency range by woodpile photonic crystals.
    Maigyte L; Purlys V; Trull J; Peckus M; Cojocaru C; Gailevičius D; Malinauskas M; Staliunas K
    Opt Lett; 2013 Jul; 38(14):2376-8. PubMed ID: 23939053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.
    Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M
    Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.