These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 23033088)

  • 21. The liquidlike ordering of lipid A-diphosphate colloidal crystals: the influence of Ca2+, Mg2+, Na+, and K+ on the ordering of colloidal suspensions of lipid A-diphosphate in aqueous solutions.
    Faunce CA; Reichelt H; Paradies HH; Quitschau P; Zimmermann K
    J Chem Phys; 2005 Jun; 122(21):214727. PubMed ID: 15974782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multiple Bragg diffraction in polymeric photonic crystals.
    Nair RV; Vijaya R
    Appl Opt; 2009 Nov; 48(31):G59-63. PubMed ID: 19881647
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. X-ray diffraction imaging using perfect crystals.
    Davis TJ
    J Xray Sci Technol; 1996 Jan; 6(4):317-42. PubMed ID: 21307532
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lifetime distribution of spontaneous emission from emitter(s) in three-dimensional woodpile photonic crystals.
    Liu JF; Jiang HX; Gan ZS; Jia BH; Jin CJ; Wang XH; Gu M
    Opt Express; 2011 Jun; 19(12):11623-30. PubMed ID: 21716395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple higher-order stop gaps in infrared polymer photonic crystals.
    Straub M; Ventura M; Gu M
    Phys Rev Lett; 2003 Jul; 91(4):043901. PubMed ID: 12906658
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray Laue Diffraction from Protein Crystals.
    Moffat K; Szebenyi D; Bilderback D
    Science; 1984 Mar; 223(4643):1423-5. PubMed ID: 17746054
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diffuse x-ray scattering from tropomyosin crystals.
    Chacko S; Phillips GN
    Biophys J; 1992 May; 61(5):1256-66. PubMed ID: 1600083
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of photonic crystals for the visible spectrum by holographic lithography.
    Campbell M; Sharp DN; Harrison MT; Denning RG; Turberfield AJ
    Nature; 2000 Mar; 404(6773):53-6. PubMed ID: 10716437
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of X-ray rocking curves in the Bragg-Laue case.
    Yoshizawa M; Fukamachi T; Hirano K; Oba T; Negishi R; Hirano K; Kawamura T
    Acta Crystallogr A; 2008 Sep; 64(Pt 5):515-8. PubMed ID: 18708714
    [TBL] [Abstract][Full Text] [Related]  

  • 31. I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source.
    Nowell H; Barnett SA; Christensen KE; Teat SJ; Allan DR
    J Synchrotron Radiat; 2012 May; 19(Pt 3):435-41. PubMed ID: 22514182
    [TBL] [Abstract][Full Text] [Related]  

  • 32. One Dimensional Photonic Crystals Using Ultrahigh Refractive Index Chalcogenide Hybrid Inorganic/Organic Polymers.
    Kleine TS; Diaz LR; Konopka KM; Anderson LE; Pavlopolous NG; Lyons NP; Kim ET; Kim Y; Glass RS; Char K; Norwood RA; Pyun J
    ACS Macro Lett; 2018 Jul; 7(7):875-880. PubMed ID: 35650762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Passband modes beyond waveguide cutoff in metallic tilted-woodpile photonic crystals.
    Sun P; Williams JD
    Opt Express; 2011 Apr; 19(8):7373-80. PubMed ID: 21503048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.
    Ledermann A; Cademartiri L; Hermatschweiler M; Toninelli C; Ozin GA; Wiersma DS; Wegener M; von Freymann G
    Nat Mater; 2006 Dec; 5(12):942-5. PubMed ID: 17128257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional structure of a single colloidal crystal grain studied by coherent x-ray diffraction.
    Gulden J; Yefanov OM; Mancuso AP; Dronyak R; Singer A; Bernátová V; Burkhardt A; Polozhentsev O; Soldatov A; Sprung M; Vartanyants IA
    Opt Express; 2012 Feb; 20(4):4039-49. PubMed ID: 22418162
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diffraction of X-ray free-electron laser femtosecond pulses on single crystals in the Bragg and Laue geometry.
    Bushuev VA
    J Synchrotron Radiat; 2008 Sep; 15(Pt 5):495-505. PubMed ID: 18728321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-resolved methods in biophysics. 6. Time-resolved Laue crystallography as a tool to investigate photo-activated protein dynamics.
    Bourgeois D; Schotte F; Brunori M; Vallone B
    Photochem Photobiol Sci; 2007 Oct; 6(10):1047-56. PubMed ID: 17914477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental demonstration of selective compression of femtosecond pulses in the Laue scheme of the dynamical Bragg diffraction in 1D photonic crystals.
    Svyakhovskiy SE; Skorynin AA; Bushuev VA; Chekalin SV; Kompanets VO; Maydykovskiy AI; Murzina TV; Mantsyzov BI
    Opt Express; 2014 Dec; 22(25):31002-7. PubMed ID: 25607049
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and repair of cataract induced by ultraviolet radiation.
    Michael R
    Ophthalmic Res; 2000; 32 Suppl 1():ii-iii; 1-44. PubMed ID: 10817682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.