These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 23033141)

  • 1. A comparative study of iron uptake mechanisms in marine microalgae: iron binding at the cell surface is a critical step.
    Sutak R; Botebol H; Blaiseau PL; Léger T; Bouget FY; Camadro JM; Lesuisse E
    Plant Physiol; 2012 Dec; 160(4):2271-84. PubMed ID: 23033141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae.
    Botebol H; Sutak R; Scheiber IF; Blaiseau PL; Bouget FY; Camadro JM; Lesuisse E
    Biometals; 2014 Feb; 27(1):75-88. PubMed ID: 24281777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron uptake mechanism in the chrysophyte microalga Dinobryon.
    Carmel N; Tel-Or E; Chen Y; Pick U
    J Plant Physiol; 2014 Jul; 171(12):993-7. PubMed ID: 24974325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ostreococcus tauri is a new model green alga for studying iron metabolism in eukaryotic phytoplankton.
    Lelandais G; Scheiber I; Paz-Yepes J; Lozano JC; Botebol H; Pilátová J; Žárský V; Léger T; Blaiseau PL; Bowler C; Bouget FY; Camadro JM; Sutak R; Lesuisse E
    BMC Genomics; 2016 May; 17():319. PubMed ID: 27142620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction-dependent siderophore assimilation in a model pennate diatom.
    Coale TH; Moosburner M; Horák A; Oborník M; Barbeau KA; Allen AE
    Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23609-23617. PubMed ID: 31685631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonreductive iron uptake mechanism in the marine alveolate Chromera velia.
    Sutak R; Slapeta J; San Roman M; Camadro JM; Lesuisse E
    Plant Physiol; 2010 Oct; 154(2):991-1000. PubMed ID: 20724644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana.
    Tachibana M; Allen AE; Kikutani S; Endo Y; Bowler C; Matsuda Y
    Photosynth Res; 2011 Sep; 109(1-3):205-21. PubMed ID: 21365259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms.
    Kazamia E; Sutak R; Paz-Yepes J; Dorrell RG; Vieira FRJ; Mach J; Morrissey J; Leon S; Lam F; Pelletier E; Camadro JM; Bowler C; Lesuisse E
    Sci Adv; 2018 May; 4(5):eaar4536. PubMed ID: 29774236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Siderophore-iron uptake in saccharomyces cerevisiae. Identification of ferrichrome and fusarinine transporters.
    Yun CW; Tiedeman JS; Moore RE; Philpott CC
    J Biol Chem; 2000 May; 275(21):16354-9. PubMed ID: 10748025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic evidence that ferric reductase is required for iron uptake in Saccharomyces cerevisiae.
    Dancis A; Klausner RD; Hinnebusch AG; Barriocanal JG
    Mol Cell Biol; 1990 May; 10(5):2294-301. PubMed ID: 2183029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron Uptake Mechanisms in Marine Phytoplankton.
    Sutak R; Camadro JM; Lesuisse E
    Front Microbiol; 2020; 11():566691. PubMed ID: 33250865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron transport and storage in the coccolithophore: Emiliania huxleyi.
    Hartnett A; Böttger LH; Matzanke BF; Carrano CJ
    Metallomics; 2012 Nov; 4(11):1160-6. PubMed ID: 23011578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae.
    Lesuisse E; Labbe P
    J Gen Microbiol; 1989 Feb; 135(2):257-63. PubMed ID: 11699493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cysteine Enhances Bioavailability of Copper to Marine Phytoplankton.
    Walsh MJ; Goodnow SD; Vezeau GE; Richter LV; Ahner BA
    Environ Sci Technol; 2015 Oct; 49(20):12145-52. PubMed ID: 26420592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferric iron reduction and iron assimilation in Saccharomyces cerevisiae.
    Anderson GJ; Lesuisse E; Dancis A; Roman DG; Labbe P; Klausner RD
    J Inorg Biochem; 1992 Aug 15-Sep; 47(3-4):249-55. PubMed ID: 1431884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain.
    Lesuisse E; Casteras-Simon M; Labbe P
    J Biol Chem; 1996 Jun; 271(23):13578-83. PubMed ID: 8662826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae.
    Georgatsou E; Alexandraki D
    Mol Cell Biol; 1994 May; 14(5):3065-73. PubMed ID: 8164662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel protein, ubiquitous in marine phytoplankton, concentrates iron at the cell surface and facilitates uptake.
    Morrissey J; Sutak R; Paz-Yepes J; Tanaka A; Moustafa A; Veluchamy A; Thomas Y; Botebol H; Bouget FY; McQuaid JB; Tirichine L; Allen AE; Lesuisse E; Bowler C
    Curr Biol; 2015 Feb; 25(3):364-371. PubMed ID: 25557662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide screen for genes with effects on distinct iron uptake activities in Saccharomyces cerevisiae.
    Lesuisse E; Knight SA; Courel M; Santos R; Camadro JM; Dancis A
    Genetics; 2005 Jan; 169(1):107-22. PubMed ID: 15489514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.